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Abstract— A single DNA microarray measures thousands to
tens of thousands of gene expression levels, but experimental
datasets normally consist of much fewer such arrays, typically
in tens to hundreds, taken over a selection of tissue samples. The
biological interpretation of these data relies on identifying subsets
of induced or repressed genes that can be used to discriminate
various categories of tissue, to provide experimental evidence for
connections between a subset of genes and the tissue pathology.
A variety of methods can be used to identify discriminatory gene
subsets, which can be ranked by classification accuracy. But
the high dimensionality of the gene expression space, coupled
with relatively fewer tissue samples, creates the dimensionality
problem: gene subsets that are too large to provide convincing
evidence for any plausible causal connection between that gene
subset and the tissue pathology. We propose a new gene selection
method, clustered gene selection (CGS) which, when coupled
with existing methods, can identify gene subsets that overcome
the dimensionality problem and improve classification accuracy.
Experiments on eight real datasets showed that CGS can identify
many more cancer related genes and clearly improve classifica-
tion accuracy, compared with three other non-CGS based gene
selection methods.

Index Terms— Microarray gene expression data; Gene cluster-
ing; Gene selection; Classification

I. INTRODUCTION

DNA microarrays have provided the opportunity to measure
the expression levels of thousands of genes simultaneously.
Such an emerging technology enables the language of biology
to be spoken in mathematical terms, yet abstracting useful
information from a large volume of experimental microarray
data remains challenging. One of the most common applica-
tions is to use microarrays for comparing the gene expression
levels in tissues under different conditions, such as wild-
type versus mutant, or healthy versus diseased. In general,
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among the thousands to tens of thousands of genes that are
monitored simultaneously in multiple experiments, only a
fraction of them are biologically relevant and can be identified
as contributors to tissue samples’ properties. These interesting
genes are usually differentially regulated under experimen-
tal conditions, i.e, their expression levels are increased or
attenuated, compared to the normal levels. Identifying these
discriminatory genes is very important in many applications
such as disease subtype discovery and profiling [1], [2], [3].
Other genes, such as house-keeping genes whose expression
levels are largely unchanged under different conditions, are
less important in providing information to downstream data
analysis.

Microarray experiments are still expensive and an appli-
cation typically requires a volume of data that may take
several months or years to accumulate. Within one dataset, the
number of samples is normally small, only in tens to hundreds,
compared to the large number of genes monitored. Therefore,
such a high dimensionality gene space has to be carefully
managed in class prediction. Both dimensionality reduction
and gene selection have been used for this purpose. This paper
addresses the latter: to identify a subset of discriminatory
genes that can be used for effective class prediction.

A variety of approaches have been proposed for gene
selection. For example, Golub et al. [1] developed a measure
of correlation that emphasizes the “signal-to-noise” ratio in
using the gene as a predictor, and selected a number of top
ranked genes as discriminatory genes. This ratio captures the
basic rule of gene selection: that a discriminatory gene must
have close expression levels in samples within a class, but
significantly different expression levels in samples across dif-
ferent classes. Other approaches that adopt the same principle,
with modifications and enhancements, include [4], [5], [3] and
many others. Xiong et al. [6] select a subset of genes with a
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maximum classification accuracy through sequential (floating)
forward selections (SFS, SFFS). Guyon et al. [7] suggest
a gene selection method that uses support vector machines
(SVMs) and recursive feature elimination (RFE).

It is of great interest that, on a common microarray dataset,
different gene selection methods reported different subsets of
genes, though they all achieved high classification accuracies
[7], [5], [3]. One explanation has been that many genes
have similar discrimination power, thus although biologically
relevant, including them all would make some portion of
the selected gene subset redundant for classification purpose.
Consequently, gene selection methods that “order” genes dif-
ferently will report different gene subsets. Nonetheless, identi-
fying all correlated genes is equally important to classification,
though a small subset of them might have reached 100%
classification accuracy. On the other hand, when a subset of
genes reaches 100% classification accuracy, it is often difficult
to identify another discriminative gene by adding it to the
subset.

In this paper, we address the issue of reporting all possibly
correlated genes through combining gene clustering and gene
selection in class prediction. Essentially, we allow only a
limited number of genes from a cluster to be selected for
classification purposes, where a cluster is a subset of genes
that have very similar expression patterns across all samples.
The output of such a clustered gene selection (CGS) method
is a subset of genes that represent several clusters of similarly
expressed genes. This way, by limiting the number of genes
from a cluster, it leaves room for less correlated genes to
be discovered, as well as some complementary genes that,
individually, do not do well at separating the data.

The rest of the paper is organized as follows: After intro-
ducing some basics of gene selection, we present the details
of the CGS method in Section II. Section III describes the
experiments on combining CGS with two classifiers: k nearest
neighbors (KNN) and a linear kernel support vector machine
(SVM). Two most complex of the eight real microarray
datasets that were used in the experiments are also described in
the section. We discuss our results in Section IV. Specifically,
we examine the impact of varying the number of clusters, the
number of genes to be selected, and the distance measure in
gene clustering (the Pearson correlation coefficient and the
Euclidean distance). We also examine the quality of CGS,
through comparisons to the non-CGS based gene selection
methods Cho’s [5], F-test [4], [2], and GS [3]; the differences
in the performances of KNN- and SVM-classifiers when
combined with CGS and non-CGS based Cho’s, F-test, and
GS are also examined. Section V summarizes our conclusions.

II. THE CLUSTERED GENE SELECTION METHOD

There are two challenges in microarray data classification.
One is class discovery to define previously unrecognized
classes; but this is not the focus of this paper. The other is to
assign individual samples to already-defined classes. Methods
such as the one in [7] can do the classification directly on
the dataset by using all genes, though it might suffer from
the dimensionality problem. Another approach is to select a

subset of discriminatory genes and use only them as features
for class prediction. In fact, one of the main purposes of gene
selection is to identify biomarkers that can effectively predict
the classes for samples. To this goal, a number of samples
with known class labels are provided, which form the training
dataset. The classifier built on the selected genes is tested
on unlabeled samples and its performance is measured by
the classification accuracy, which is defined as the number
of correctly identified samples divided by the total number
of testing samples. The leave-one-out (LOO) cross validation
method is a process that uses one sample for testing and all
the others for training, then the process is repeated for every
sample in the dataset. Another popular cross validation is `-
fold, in which the whole dataset is partitioned into ` equal
parts and, at one time, one part is used for testing and the
other ` − 1 parts for training. In our experiments, we used
both cross validation methods, but chose to report only 5-fold
average classification accuracy over 20 iterations of random
partitions. The LOO cross validation results are included in
Supplementary Materials.

Many existing gene selection methods are based on a
gene scoring function that assigns a score for each gene,
which approximates the relative discriminatory strength of the
gene. Such gene scoring functions can be the classification
accuracy of individual genes [6], or capture the basic rule
that discriminatory genes are those being close at expression
levels in intra-class samples but being significantly different
in inter-class samples [4], [5], [3]. Among the latter category
there are T-test and F-test based gene selection [4], [2], Cho’s
gene selection [5], and an improved version of Cho’s called
the GS method [3]. Here we adopt these three gene selection
methods as our base methods. These methods generally return
a number of top ranked genes, and their quality is measured
by the classification accuracy of the classifier built on them.
It is noticed that some correlated genes have very similar
expression profiles. Consequently, they must have similar
discrimination power in terms of classification, and once one
is top ranked, the others will also be top ranked. However,
using them all in building a classifier is redundant in that
their discrimination power overlaps. Furthermore, we believe
that when the number of selected genes is pre-specified, other
genes with less discriminatory power would be excluded, and,
as we later show, prevent improvements in classification.

Based on the above observations, we propose to do
gene clustering before gene selection. Assume the training
dataset consists of n genes and m samples. We apply a
k-means clustering algorithm [8] to group the n genes into
k clusters, for some k (to be discussed below). Essentially,
k-means is a centroid-based clustering algorithm that
partitions the genes into k clusters based on their pairwise
distance, to ensure that intra-cluster similarity is high and
inter-cluster similarity is low. We use both the Euclidean
distance (http://bonsai.ims.u-tokyo.ac.jp/
∼mdehoon/software/cluster/software.htm)
and the Pearson correlation coefficient (http:
//rana.lbl.gov/EisenSoftware.htm) in our
k-means experiments. At the same time, a gene scoring
function is used to order the genes. With the cluster
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information for each gene, the CGS method scans the ordered
gene list to pick up a total of L genes such that at most C

genes from each cluster are selected. That is, when there
are already C genes from a cluster, other genes belonging
to the same cluster are simply skipped. Depending on the
scoring function used, which can be Cho’s, F-test, or GS, we
refer to the resulting gene selection methods as CGS-Cho’s,
CGS-F-test, and CGS-GS, respectively. Subsequently, these
L selected genes are fed to a KNN-classifier [3] and an
SVM-classifier with a linear kernel (http://theoval.
sys.uea.ac.uk/∼gcc/svm/toolbox/), to construct
the class predictor. For example, CGS-GS-SVM refers to the
SVM predictor built on genes selected by CGS-GS.

III. EXPERIMENTAL RESULTS

We included three gene selection methods in our exper-
iments: Cho’s [5], F-test [2], and GS [3] (the GS1 in [3],
another similar one GS2 is included in Supplementary Mate-
rials), from which we constructed three CGS based methods:
CGS-Cho, CGS-F-test, and CGS-GS. We applied these six
methods on eight real microarray datasets, among which the
CAR dataset is probably the most complex, as it contains
only 174 samples but in 11 classes, followed by the GLIOMA
dataset as the second most complex. Here we report results of
the KNN-classifier, with k = 5. (The Matlab source code for
KNN-classifier is included in Supplementary Materials.) All
experiments were conducted in the Matlab (http://www.
mathworks.com) environment on a cluster of 32 2.33GHz
CPUs. We focus on the report of our results mostly on the
CAR dataset, with some results from the GLIOMA dataset.
Only 5-fold cross validation results are reported. Complete
results are not included due to space limit, but they are all
available through Supplementary Materials.

A. Dataset Descriptions

The GLIOMA dataset contains 50 samples in four
classes: classic glioblastoma, nonclassic glioblastoma, clas-
sic anaplastic oligodendroglioma and nonclassic anaplastic
oligodendroglioma. This dataset is from Affymetrix U95av2
GeneChips. These classes have 14, 14, 7, 15 samples, re-
spectively [9]. Each sample originally had 12,625 genes.
We apply a standard filtering method to remove genes with
minimal variations across the samples [9]. For this dataset,
the intensity thresholds were set at 20 and 16000 units. That
is, all hybridization intensity values less than 20, including
negative hybridization intensity values, were raised to 20; and
those higher than 16000 were shifted to 16000. Also, genes
whose expression levels varied < 100 units between samples,
or varied < 3 folds between any two samples, were excluded.
After preprocessing, we obtained a dataset on 4,433 genes.

The CAR dataset contains in total 174 samples in eleven
classes: prostate, bladder/ureter, breast, colorectal, gastroe-
sophagus, kidney, liver, ovary, pancreas, lung adenocarci-
nomas, and lung squamous cell carcinoma, which have 26,
8, 26, 23, 12, 11, 7, 27, 6, 14, 14 samples, respectively
[10]. This dataset is from Affymetrix U95a GeneChips. Each
sample originally contained 12,533 genes. We preprocessed

the dataset as described in [10] to include only those probe sets
whose maximum hybridization intensity in at least one sample
was 200; And all hybridization intensity values less than 20,
including negative hybridization intensity values, were raised
to 20, and the data were log transformed. After preprocessing,
we obtained a dataset on 9,182 genes.

Descriptions of the other six datasets can be found in
Supplementary Materials.

B. 5-Fold Cross Validation Classification Accuracies

In the discussion section, we report the experimental results
on choosing the value for k in the k-means clustering algo-
rithm and choosing the value for C, the maximum number of
genes from each cluster. Those results support that k = 100
and C = 1 is one of the best settings that often achieves
the highest classification accuracies on the GLIOMA dataset.
For this reason, we chose to set k = 100 and C = 1 as
defaults. Also, the default similarity measure in the k-means
is the Pearson correlation coefficient (cf. Subsection IV.B).
Figure 1 and 2 plot the 5-fold cross validation classification
accuracies for the Cho’s, F-test, GS, CGS-Cho’s, CGS-F-
test, and CGS-GS gene selection methods on the GLIOMA
and CAR datasets, respectively, where results for the KNN-
classifier and SVM-classifier are plotted separately. We also
tested a gene selection method to randomly pick a subset of
genes, and used its experimental results as a baseline. This
method is denoted as Random. Subsequently, combined with
a KNN-classifier and an SVM-classifier, we have Random-
KNN and Random-SVM, respectively, and their performances
are also plotted in the figures. We did not test the `-fold cross
validation for other values of ` in the current work.

The classification accuracies on all the eight datasets show
that the CGS based gene selection methods outperformed their
non-CGS based counterparts. The CAR dataset seems the
most complex among the eight datasets, since it contains the
largest number of genes and the most classes. Non-CGS based
methods actually performed poorly as seen in the three plots in
Figures 1 and 2. For example, in Figure 2, the average 5-fold
classification accuracies are all below 50% when 20 genes or
less are used. The CGS based methods performed much better
and can reach above 80% when 20 genes are used. Further
detailed quantitative improvements by the CGS method will
be discussed in Section IV.C.

Figure 3 and Figure 4 show the standard deviations over
100 5-fold classification accuracies of all the seven gene
selection methods, combined with KNN-classifier and SVM-
classifier, on the GLIOMA and CAR dataset, respectively. The
results show that the standard deviations of accuracies of all
the methods do not have any significant difference within a
dataset, though they are a little bit larger in the GLIOMA
dataset than in the CAR dataset.

Regarding the baseline performance, the Random method
was not bad and in fact in a few cases, the experimental results
are even better than some of the non-CGS-based methods.
This fact strongly suggests the dimensionality problem in the
microarray datasets. Nonetheless, overall, both the non-CGS-
based methods and Random performed much worse than the
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Fig. 1
5-FOLD CLASSIFICATION ACCURACIES OF ALL THE SIX GENE SELECTION

METHODS, COMBINED WITH KNN-CLASSIFIER AND SVM-CLASSIFIER,
ON THE GLIOMA DATASET.

CGS-based methods, and these notably higher classification
accuracies by the CGS-based methods demonstrate that the
CGS-based methods are able to reduce the overfitting effect
to identify more hidden discriminatory genes.

IV. DISCUSSION

A. Number of Clusters and Number of Genes Per Cluster

In the gene clustering stage, the k-means algorithm requires
a manual input k that defines the number of clusters to be
returned. On each dataset, the number of gene clusters affects
the sizes of the resultant clusters, which in turn requires the
tuning of C, the maximum number of genes selected from
each cluster as discriminatory genes. Intuitively, a smaller
k suggests a larger gene pool for a cluster, and therefore a
larger value should be set for C. On the GLIOMA dataset,
we have performed experiments using different combinations
of k (80, 90, . . . , 140, 150) and C (1, 2, 3, 4, 5). For each k,
its quality is measured by the average 5-fold classification
accuracy over five values of C, that is, a total 100 × 5 ×

3 × 2 = 3000 classification accuracies, where 100, 3 and 2
indicate a hundred 5-fold training and testing, three CGS based
methods and two different classifiers respectively (only the
Pearson correlation coefficient was tested). Similarly, for each
C, its quality is measured by the average 5-fold classification
accuracy over eight values of k, that is, a total 100×8×3×2 =
4800 classification accuracies. All these average classification
accuracies are plotted in Figure 5. These plots indicate that
C = 1 is the best choice and k = 90, 100, 110 are equally
good. This strongly suggests that, according to the expression
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METHODS, COMBINED WITH KNN-CLASSIFIER AND SVM-CLASSIFIER,
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ALL THE SEVEN GENE SELECTIONS METHODS, COMBINED WITH

KNN-CLASSIFIER AND SVM-CLASSIFIER, ON THE GLIOMA DATASET.

levels, genes can roughly be grouped into around 100 clusters,
and that among the similarly expressed genes from a cluster,
using one of them for building classifier is probably sufficient.
We therefore set C = 1 and k = 100 as the default setting for
the CGS based gene selection methods.

B. Distance Measure in k-Means Clustering

In microarray gene expression data analysis, the Euclidean
distance and the Pearson correlation coefficient are the two
most commonly used similarity measures between genes. Both
are tested in the k-means clustering algorithm on the GLIOMA
and CAR datasets. The quality of each similarity measure is
determined by the average 5-fold classification accuracies for
CGS-Cho’s/F-test/GS-KNN/SVM methods, under the default
setting (C = 1 and k = 100), i.e., a total of 100 × 3 × 2 =
600 classification accuracies. These averages are plotted in
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Figure 6, where one can see that on the CAR dataset, the
Pearson correlation coefficient might be (consistently) a little
better than the Euclidean distance. But on the GLIOMA
dataset such an observation is not noticeable. Overall, the
test results on all the eight datasets do not clearly show that
one similarity measure is dominantly better than the other.
We chose the Pearson correlation coefficient as our default
setting. All the results on the Euclidean distance are included
in Supplementary Materials.

C. The Performance of CGS

In terms of 5-fold cross validation classification accuracy,
the CGS based gene selection methods clearly outperform their
non-CGS counterparts (Figures 1 and 2, and Supplementary
Materials). To demonstrate the strength of the CGS method
more clearly, we took the average of the classification ac-
curacies of all the three CGS based gene selection methods
combined with each of the two classifiers, on all the eight
datasets (that is, average over 100×3×8 = 2400 accuracies),
and the average of the classification accuracies of all the
three non-CGS based gene selection methods combined with
each of the two classifiers, on all the eight datasets (that is,
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THE CAR DATASET, WHERE k = 100 AND C = 1.

again, average over 2400 accuracies). Similarly, for Random,
we have Random-KNN and Random-SVM. These six average
classification accuracies, CGS-KNN, non-CGS-KNN, CGS-
SVM, non-CGS-SVM, Random-KNN and Random-SVM, are
plotted in Figure 7, where the averages over LOO cross
validation classification accuracies are also separately plotted.

From these 12 plots, one can see that combining with
either of KNN-classifier and SVM-classifier, the CGS method
can improve the classification accuracy noticeably and con-
sistently, typically when the pre-specified number of selected
genes is small.

D. A Case Study: The CAR Dataset

As shown in Figures 1 and 2 and discussed in Section IV.C,
the CGS based classification methods are generally superior to
the corresponding non-CGS based ones. To determine whether
the CGS based methods have chosen biologically relevant
genes as the discriminators, the top 80 genes were analyzed
further for all six methods CGS-Cho’s, Cho’s, CGS-F-test, F-
test, CGS-GS, and GS. Compared with the tumor-specific 216
genes published in the paper of the CAR dataset [10], the top
80 genes selected by the three non-CGS based methods share
39, 41, 43, respectively (Figure 8), which are roughly 50%. In
contrast, the three corresponding CGS methods contain only
17, 17, 20 genes, respectively, which are roughly 25%. The
first impression is that this reduced percentage of discrim-
inatory genes doesn’t make sense, but further investigation
reveals that the CGS methods identify many more cancer
related genes, to be explained in the following.

Overall, there are only 3 common genes selected by all
the six methods, which are KLK3, ELA3A, and GATA3.
KLK3 and ELA3A are known signature genes for prostate
and pancreas tumors, respectively [10]. The literature shows
that GATA3 is a cancer-related gene too, with its informa-
tion detailed in Supplementary Materials. This result clearly
demonstrates that different gene selection algorithms can pick
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up different sets of genes for disease classification. The exper-
iments also show that, in principle, there exist genes having
equal discrimination power, as different subsets of genes can
reach quite compatible classification accuracies on the same
dataset.

Secondly, it is particularly interesting to find that the gene
subsets selected by all three CGS based methods share less
with the published tumor-specific genes, but they all achieved
notably better classification accuracies. The comparison of
these three sets of 80 genes revealed a subset of 29 common
genes, which were picked rarely by the three non-CGS based
methods (only 3, 9, 10, by Cho’s, F-test, GS, respectively).
Among these 29 genes, 5 are signature genes published in
the original paper, and the other 24 are new discriminatory
genes determined by all three CGS based methods. (Note
that these 24 probe subsets, see Supplementary Materials,
actually represent 23 genes, due to the redundancy of two
probe subsets targeting PRCKI.) An immediate question is
whether these 24 genes play an important role for achieving
improved classification accuracies by the CGS based methods.
To answer this question, the probe sets of these 24 new
discriminatory genes were examined individually to investigate
their biological functions related to the intrinsic molecular
characteristics of the cancer cells. The collected facts (see
Supplementary Materials) clearly show that the majority of
these 24 genes are related to human tumorigenesis, even the
probe set 329 s at, which does not have any annotations at
NETAFFX (Affymetrix database), is decoded to be linked

to cancer. Interestingly, these 24 genes were not selected as
biomarkers in the original paper [10] and are rarely chosen as
top 80 genes in the non-CGS based methods (Figure 8).

Since the classification accuracies of the CGS based meth-
ods are always higher than the non-CGS based methods, we
believe that the 29 genes (24 new genes and 5 signature genes)
shared by the CGS based methods must very likely be the
major contributors to the classification improvement. Table I
collects the classification accuracy of these 29 genes alone and
the classification accuracies of the top 29 genes selected by
the three CGS based methods individually, where the former
is much higher than all the latter three. We have also tested the
six non-CGS based classifiers by using their 33 common genes
as the base set of genes, and to include L randomly selected
genes, for L ∈ [1, 50]; Similarly, we have tested the six CGS
based classifiers by using their 29 common genes as the base
set of genes, and to include L randomly selected genes, for
L ∈ [1, 50]. The average classification accuracies (each over
three) of non-CGS/CGS KNN/SVM classifiers are plotted in
Figure 9, where we can conclude that the discrimination power
of the 29 CGS common genes is much higher than that of the
33 non-CGS common genes.

Note that introducing CGS to the classification algorithms
suggests that the genes with equal discriminatory power might
be grouped together based on their similar expression profiles.
By limiting the number of genes per cluster, other biologically
relevant genes with relatively low ranks can emerge and
participate in the list of biomarkers. These new genes, with
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TABLE I
CLASSIFICATION ACCURACIES OF THE 33 COMMON GENES AMONG THE TOP 80 GENES SELECTED BY THE THREE NON-CGS BASED METHODS, THE 29

COMMON GENES AMONG THE TOP 80 GENES SELECTED BY THE THREE CGS BASED METHODS, AND THE TOP 29 GENES SELECTED BY THE THREE CGS
BASED METHODS, RESPECTIVELY.

33 non-CGS 29 CGS CGS-Cho’s/29 CGS-F-test/29 CGS-GS/29
5-Fold-KNN 0.6917 0.8931 0.8348 0.8477 0.8612
5-Fold-SVM 0.6330 0.9057 0.8290 0.8417 0.8399
LOO-KNN 0.6954 0.8851 0.8391 0.8506 0.8793
LOO-SVM 0.6264 0.9138 0.8448 0.8333 0.8391
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Fig. 8
THE OVERLAPPING GENES AMONG THE TOP 80 GENES RETURNED BY THE

SIX METHODS. COMPARED WITH THE TUMOR-SPECIFIC PUBLISHED

SIGNATURE GENES, THE SETS OF TOP 80 GENES SELECTED BY THE THREE

NON-CGS BASED METHODS CONTAIN 39, 41, 43 SUCH GENES,
RESPECTIVELY, SHOWN AS THE BOTTOM PORTION OF THE BARS. THERE

ARE 24 NEW COMMON DISCRIMINATORY GENES SELECTED BY THE THREE

CGS BASED METHODS, SHOWN AS THE TOP PORTION OF THE BARS.

different expression patterns, will contribute different strength
to classification, to achieve better classification accuracy. The
appearance of these 29 genes in the CAR dataset by the
CGS based methods has confirmed our initial hypothesis, and
shown that the discriminatory genes identified by CGS have an
impressively high probability to be tumor-related. Nonetheless,
as the parameters C and k were selected based on the test on
the GLIOMA dataset, they may not be optimal with respect
to the CAR dataset. For example, we still found redundant
biomarkers by the CGS based methods, as well as two probe
subsets targeting the same gene PRCK1 in the 29 gene set. One
possible resolution of this issue is to increase the k value. It is
very likely that 100 clusters is too small for the CAR dataset.
However, the highly improved classification results with the
non-optimized parameters indicated that the values of these
parameters are very robust in the CGS based methods, though
better classification accuracy could still be achieved by fine
tuning of these parameters.

For the collection of 500 subsets of 80 genes, each from a
5-fold cross validation (100 independent runs) for CGS-Cho’s-
KNN on the CAR dataset, we calculated the frequency of a
gene occurring in these 500 subsets. It turns out that there
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Fig. 9
THE 5-FOLD AVERAGE CLASSIFICATION ACCURACIES OF NON-CGS/CGS

KNN/SVM CLASSIFIERS (OVER THREE GENE SELECTION METHODS)
USING THE 33 NON-CGS COMMON GENES OR THE 29 CGS COMMON

GENES AS THE BASE SET, RESPECTIVELY, AND A NUMBER OF RANDOMLY

SELECTED GENES, ON THE CAR DATASET.

are 14 genes whose frequencies go beyond 90% (Figure 10),
indicating that the selected genes are quite stable by the CGS-
GS-KNN method. Moreover, the average frequency of the 29
common genes by the CGS methods is 0.7587, which is much
higher than the average frequency of other genes, 0.5421. It
provides another evidence that these 29 common genes could
be biologically more meaningful than the others.

V. CONCLUSIONS

We have examined a method of combining gene clustering
to identify many biological relevant discriminatory genes for
class prediction using microarray datasets. Our clustered gene
selection (CGS) for classification is able to identify certain
clusters of genes that have equal strength in classification,
yet is computationally very efficient. Our experiments on the
eight real datasets showed that CGS can clearly improve the
classification accuracy by selecting the same number of genes,
compared to three non-CGS based gene selection methods.
Moreover, there are many interesting properties associated
with the CGS method, for example, the CGS based gene
selection methods tend to have much bigger set of overlapping
genes.

The three non-CGS based gene selection methods Cho’s, F-
test, and GS all use correlation coefficients to rank the genes.
Our next immediate task is to examine the performance of
the CGS method when combined with other categories of
gene selection methods, such as using the individual gene
contribution to the separation as a ranking scheme [6] as
well as the relatively more complex SVM-RFE gene selection
method by Guyon et al. [7].
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Fig. 10
THE FIRST 80 GENES, SORTED IN DECREASING FREQUENCY, SELECTED BY THE CGS-CHO’S-KNN METHOD ON THE CAR DATASET, COLLECTED IN 500

SUBSETS OF 80 GENES EACH IN THE 5-FOLD CROSS VALIDATION. THE 24 COMMON GENES SELECTED THE THREE CGS BASED METHODS ARE SHOWN IN

SOLID GREEN BARS.

VI. SUPPLEMENTARY MATERIALS

The eight microarray datasets are provided through web-
page “http://www.cs.ualberta.ca/∼ghlin/src/
WebTools/cgs.php”. In the same webpage, many more
experimental results are included, which could not sit here
due to space limit.
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