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We propose a kernel-based method for inferring regulatory networks from gene expression data that exploits several

important factors previously neglected in the literature, including expression clustering, nonlinear regulator-gene
relationships, variable time lags and gene competition. In particular, our approach infers regulatory relationships by

encouraging genes with similar expression patterns to share common regulators. Furthermore, since regulator-gene
expression relationships are not typically linear but instead obey a wider class of canalyzing relationships, we map the

relations between transcription factors to an implicit higher dimensional space that is able to model more complex

interactions. Such a kernel-based approach avoids explicit enumeration of canalyzing regulations while allowing non-
linear relations between transcription factors to be discovered. Third, to address the problem of varying regulation

time lags, we exploit cubic spline interpolation to identify more precise lag times from discretely sampled expression

levels, leading to more robust inference of regulatory delays. Finally, we model competition between genes; an effect
that has not been explicitly modeled by previous methods. The combination of these extensions leads to more accurate

inference of regulator-gene causal relations from gene expression data.
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1. INTRODUCTION

Genes play a central role in governing biological

system function. Rather than acting individually,

genes and their products cooperate to form dynamic

regulatory networks. Revealing and understanding

these complex networks of interaction is critical to

understanding life at a fundamental systems level,

enabling advances in systems biology, drug design,

health care, and so on. With the emergence and

development of high-throughput gene profiling tech-

nology and ChIP-on-chip technology, gene regulatory

network research has greatly expanded, but reliable

gene regulatory networks are still being sought in the

research community. The goal of such research is

to discover the causal control relationships between

genes, leading to a fundamental understanding of

how biological processes are coordinated in the cells.

Various computational approaches have been

proposed in the literature for inferring gene regu-

latory networks from expression data. Most ap-

proaches have used linear models to express depen-

dence between time series profiles. For example,

D’Haeseleer et al. 5 proposed a simple linear model,

while De Jong et al. 10 and Chen et al. 2 studied

linear differential equations for modeling gene regu-

latory networks. Unfortunately, these methods suf-

fer from over-fitting, since the number of parame-

ters fit is proportional to the size of the data itself.

Other linear approaches attempt to exploit sparse-
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ness of the regulatory relationships between genes

to counteract the risk of over-fitting. These mod-

els employ the idea that any one gene is regulated

by a small subset of the other genes. De Hoon et

al. 8 proposed to use Akaike’s Information Criterion

(AIC) to determine the nonzero coefficients. Simi-

larly, Li and Yang 16 used L1 regularization to select

features of the linear parent set. Recently, Zhang

et al. 28 proposed a new multiple linear regression

model that makes use of the scale-free property of

a real biological network. After using this scale-free

property and some appropriate statistical tests, re-

dundant interactions among the genes were removed,

then a model constructed by minimizing the gap

between the observed and predicted data. Kabir

et al. 12 proposed a new linear time-variant model

where self-adaptive differential evolution, a versatile

and robust evolutionary algorithm, is used as the

learning paradigm.

Another popular approach in gene regulatory

network induction is to infer an underlying (dy-

namic) Bayesian network structure that accounts for

the causal relationships between gene expression lev-

els. Bayesian networks provide a graphical represen-

tation of the causal relationships between a set of

variables, yielding a well formed probabilistic frame-

work for representing and inferring probabilistic re-

lationships. Generally, there are two approaches in

learning the structure of a Bayesian network from

data. The first approach is a score-based approach

where a heuristic search is performed through the

space of causal network structures to identify the

most likely structure explaining the data. The sec-

ond approach is a constraint-based approach where

conditional independence tests are used to determine

whether a direct causal relationship should be pos-

tulated between two variables. In the literature,

many variants of these techniques have been ap-

plied to gene regulatory network inference, includ-

ing search-based approaches 7; 26; 25, information-

theoretic approaches 3, parameterizing based ap-

proaches 21, and conventional dynamic Bayesian

network learning approaches 1; 29. Recently, Li et

al. 15 proposed a network-based empirical Bayes

method for analyzing genomic data in the framework

of linear models, where the dependency of genes is

modeled by a discrete Markov random field defined

on a predefined biological network.

Although the above approaches have achieved

some promising results, their effectiveness has been

severely constrained by the limited amount of data

available relative to the large number of parameters

estimated (i.e. the distinct parameters used to pre-

dict the expression level of each gene given other

genes). This difficulty appears inherent to the task,

since only a limited amount of background knowl-

edge and biologically relevant assumptions are nor-

mally applied. Unfortunately, orders of magnitude

more data would be required for such “knowledge

free” approaches to yield accurate models.

Nearly all proposed approaches using either lin-

ear modeling or Bayesian network structure learning

have a common shortcoming in that they attempt

to determine the regulation structure for each tar-

get gene independently, while it is well known that

genes that share the same expression pattern are

likely to be involved in the same regulatory process,

and therefore share the same (or at least a similar)

set of regulators 5. A few investigators, such as 24,

have previously proposed to group genes with similar

expression profiles into a single prototypical “gene”,

then model the relations between prototypical genes

instead of modeling the genes individually. However,

this is a somewhat oversimplified approach that ul-

timately ignores the individual differences between

genes in the same group, and establishes a partic-

ularly high requirement on the clustering step. In

previous work 6, Guo and Schuurmans attempted

to employ biologically significant knowledge about

co-regulation to improve the inference of the under-

lying gene regulatory network from expression data.

The novelty of this approach was to first cluster the

genes based on their time series expression profiles,

then minimize a loss determined on a set of global

indicator variables associated with the common set

of possible regulatory variables. The performance of

this approach on both synthetic data and the cell

cycle time-series gene expression data of 4 was quite

promising, showing that important transcription fac-

tors (TFs) in the cell cycle genes could be identified

more accurately. Unfortunately, this previous work

was based on using standard linear models and a very

crude form of discrete time lag inference.

In this paper, we extend the previous work in
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four key respects. First, we replace linear model in-

ference with a more flexible kernel based approach.

Second, we use spline interpolation to more accu-

rately infer regulator-gene time lags. Third, we ex-

plicitly take into account gene competition for regu-

lator mRNA within a gene cluster. Finally, we also

investigate the use of the cross entropy loss as an

alternative to the standard least squares in the min-

imization objective. The remainder of the paper is

organized as follows. Section 2 discusses the motiva-

tions of the above four approaches and presents the

methods in detail. Section 3 then presents the exper-

imental results on a Yeast dataset, which is followed

by a discussion and conclusions in Section 4.

2. METHOD

The core of our work is to pursue a kernel-based ap-

proach rather than a simple linear regression model

for regulatory network inference, so that non-linear

relations among transcription factors can be consid-

ered. Our goal is to allow the model to consider non-

linear interactions between regulators to allow more

accurate inference of TF-gene causal relationships.

Note that a linear model implicitly assumes that

multiple transcription factors independently regulate

target genes, but this is not an accurate model of the

regulatory relationship when multiple transcription

factors interact through complexes. We therefore

propose to map the linear relations between tran-

scription factors to more complex relations in high di-

mensional spaces via kernelization. Furthermore, to

enhance the accuracy of the approach we adopt three

further extensions over previous work: first, we in-

troduce spline interpolation to more accurately infer

TF-gene time lags; second, we model gene competi-

tion within gene clusters; and finally we briefly con-

sider using alternative loss models to the standard

least squares objective used in previous research.

2.1. Clustered Linear Model 6

We first re-introduce the clustered linear model de-

scribed in previous work 6. Consider an n× t matrix

Y of time series gene expression data, where each

column corresponds to the expression levels of a sin-

gle gene measured over a series of n time points, and

each row corresponds to a single time point mea-

sured over a set of t. For each gene, one wants to

identify which other genes measured in Y are likely

to be it regulators. The fundamental hypothesis we

would like to follow in the present work is that the

expression levels of a regulator gene should be pre-

dictive of the expression levels for a regulated target

gene, possibly subject to time lag and the presence

of co-regulators or absence of inhibitors.

In 6, a simple linear prediction approach was

developed. Assume that for a target expression pro-

file yj given by an n × 1 column vector from Y , we

have a set of candidate regulator profiles stored in

an n× k matrix Xj consisting of k distinct columns

selected from Y . The potential regulators could be

determined by solving for the combination weights of

the regulator profiles that best reconstruct the target

profile

min
wj
‖Xjwj − yj‖22, (1)

where the k×1 vector of combination weights wj de-

scribes how much each of the k regulator genes in Xj

contribute to best fit the target expression levels yj ,

and the quality of the fit is assessed by the residual

error in (1).

However, since the set of candidate regulators for

a given gene is usually much larger than the number

of time points, a large set of combination weights wj

need to be inferred from a limited amount of data

with such an approach. Moreover, only a tiny frac-

tion of the candidate regulators are expected to be

true regulators for any given gene, which means most

of the weights should be set to 0 to indicate non-

regulation. Therefore, 6 proposed to use an L1 norm

regularizer (rather than the traditional L2 regular-

izer) to perform feature selection while inferring the

linear model; a well known and effective method from

the machine learning literature 18; 23; 6. In partic-

ular, in this approach, one adds a penalty to the

risk (the reconstruction objective) which encourages

small values for wj :

min
wj
‖Xwj − yj‖22 + α‖wj‖1, (2)

where α is a parameter that trades off the influence

of the risk with the regularizer. The regularizer en-

courages many of the weights to become exactly zero

in the solution.
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Considering that genes with similar expression

patterns are likely co-regulated and involved in the

same functional process, 6 proposed to first clus-

ter the target genes based on their expression pro-

files. (A straightforward K-means method was used.)

Then, for each cluster, one wants to identify a set

of regulators that is shared among the entire set of

genes in the cluster, while still allowing for differ-

ences among the regulation of individual genes. For

this, 6 introduced a set of auxiliary indicator vari-

ables to control global feature selection, and used a

global regularization scheme on auxiliary selection

variables to help identify the common candidate reg-

ulators among a group of target genes with similar

expression profiles. Given that there is much more

data available for sets of similar genes, as opposed to

individual genes, the idea is that the common regu-

lators can be more accurately identified. Specifically,

for a set of target genes Y = y1, ...,ym, we want to

identify a common set of regulators from the set of

candidates X = x1, ...,xl. Define a set of indicator

variables η = η1, ..., ηl
T , corresponding to the can-

didate set X = x1, ...,xl, such that each ηi ∈ {0, 1}
indicates whether a regulator Xi is selected as an ac-

tive regulator. Let N = ∆(η), where ∆(η) denotes

putting the column vector η on the main diagonal

of a square matrix. Then, one can form a globally

regularized version of the minimization problem by

introducing the selection variables η and adding a

new global regularization term on these variables:

min
η∈{0,1}n

min
wj

∑

j

(
‖XNwj − ỹj‖22 + α‖wj‖1

)

+ λuTη, (3)

where u is a positive weight vector that allows one to

incorporate prior knowledge about the importance of

each global feature and is simply set to 1’s. Since η is

boolean, the global regularization term λuTη acts as

an L0 norm regularizer which automatically force a

sparse solution that selects only a small set of global

features for the set of target genes in a cluster. The

local L1 norm regularizer α‖wj‖ however, will still

make individual choices of regulators for each spe-

cific target gene; choosing these regulators from the

globally selected features identified by η.

2.2. Kernelized Extension

The linear models used in (1)–(3) assume that, if a

target gene (or a set of target genes) has multiple reg-

ulators, then each regulator can independently reg-

ulate the target genes, and their overall regulation

effect is a weighted addition of their individual ef-

fects. Obviously, such an assumption would be false

in cases where different transcription factors need to

form a single protein complex and possibly cooper-

ate with other such protein complexes to regulate the

target genes. That is, linear models are quite lim-

ited in that they only consider OR-gate style regula-

tion, while in nature regulation rules are more gen-

erally thought to obey the so-called canalyzing rules
13; 19; 20; 14: a combination of OR and AND gate

regulation. It follows that we need to consider more

complex relations between transcription factors than

the existing linear models considered by 6 and earlier

work. However, enumerating all possible canalyzing

rules over OR and AND gates is computationally

impractical, therefore, so we propose a kernelized ex-

tension to the basic linear model. The goal is to map

the complex relations between transcription factors

to simple linear relations in high dimensional feature

space. The use of a kernel-based model can side-step

the problem of enumerating all canalyzing regula-

tions, while discovering non-linear relations between

transcription factors that better construct the tar-

get gene profile and hence more accurately infer the

TF-gene causal relations.

First, to kernelize the L2 norm term in (3) it

suffices to consider the linear substitution wj =

NXTbj , where we re-express the weight optimiza-

tion over wj in terms of an expanded dual variable

bj .

Second, to kernelized the L1 norm term we con-

sider the trick proposed in 17, and reformulate ‖wj‖1
using the relationship:

‖wj‖1 =
k∑

p=1

|wjp|

= min
γj≥0

1

2

k∑

p=1

(
w2

jp

γjp
+ γjp

)

= min
γj≥0

1

2
wT

j G
−1
j wj + γT

j 1, (4)

where we use the definition Gj = ∆(γj). Now by
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substituting wj and (4) into (3), we obtain:

min
η∈{0,1}n

min
bj

min
γj≥0

∑

j

‖XN2XTbj − ỹj‖22

+ α
∑

j

(
1

2
bT
j XNG

−1
j NXTbj + γT

j 1

)

+ uTη. (5)

If we let Ψ = XN and Ψ̃j = XNG
−1/2
j then (5) can

be written as:

min
η∈{0,1}n

min
bj

min
γj≥0

∑

j

‖ΨΨTbj − ỹj‖22

+ α
∑

j

(
1

2
bT
j Ψ̃jΨ̃jTbj + γT

j 1

)
+ uTη. (6)

Now let K = ΨΨT and K̃j = Ψ̃jΨ̃
T
j , so that each ele-

ment Ki` in matrix K is the inner product of the i’th

and `’th row of Ψ, namely Ki` = Ψi:Ψ
T
`:. Similarly,

K̃j
i` = Ψ̃j

i:Ψ̃
j
`:
T . Because K and K̃j are symmet-

ric and positive semi-definite matrices, according to

the Mercer ’s theorem, they correspond to dot prod-

ucts in a high dimensional implicit feature space. In

our case, we use the widely adopted RBF kernel,

whereby

Ki` = e
−‖Ψi:−Ψ`:‖2

2σ2 (7)

K̃j
i` = e

−‖Ψ̃j
i:
−Ψ̃

j
`:
‖2

2σ2 . (8)

Substituting the two RBF kernel matrices into model

(6), we obtain the kernelized version:

min
η∈{0,1}n

min
bj

min
γj≥0

∑

j

‖Kbj − ỹj‖22

+ α
∑

j

(
1

2
bT
j K̃

jbj + γT
j 1

)
+ uTη. (9)

In this formulation, notice that the local (within-

cluster) feature selection is governed by γj , whereas

the global (between-cluster) feature selection is gov-

erned by η. In the final solution, for target gene

j and candidate regulator `, a value of γj` = 0 or

η` = 0 indicates that regulator ` is not selected by

target gene j.

Note that Equation (9) encodes a mixed-integer

minimization problem. Unfortunately, integer opti-

mization problems of this form are generally NP-

hard. To attempt to solve the problem efficiently,

we first relax it into an optimization over continuous

variables, by relaxing each ηi ∈ {0, 1} to be contin-

uous ηi ∈ [0, 1]. This leads to solve the following

relaxed minimization:

min
η

min
bj

min
γj≥0

∑

j

‖Kbj − ỹj‖22

+ α
∑

j

(
1

2
bT
j K̃

jbj + γT
j 1

)
+ uTη

s.t. 0 ≤ η ≤ 1. (10)

This formulation has actually relaxed the original L0

norm regularizer over boolean η to an L1 norm reg-

ularizer over continuous η. In this way we maintain

feature selection ability, while gaining computational

efficiency.

In our implementation, we jointly minimize over

all the η, bj and γj ≥ 0 in (10) using the Mat-

lab optimization toolbox fmincon, where η appears

implicitly in K through the appearance of Ψ in the

formula (7), and both η and γj appear implicitly in

K̃j through the appearance of Ψj in formula (8).

2.3. Continuous Time Lags

Notice that neither of the above models account for

any time lag between the expression of a regulating

gene and the expression of its downstream target.

In fact, they implicitly assume regulation occurs in-

stantaneously, which performs poorly at identifying

regulatory relationships that exhibit delayed effects.

To cope with this shortcoming, we previously pro-

posed a simple time-shifting method 6, in which, for

each candidate regulator measured in Xj , given by

an n × 1 vector xij , one first computes an optimal

backward shift in time that best aligns xij individu-

ally with the target yj :

s∗ij = arg min
s∈{1,2,3}

‖xij(1, ..., n− s) (11)

−yj(s+ 1, ..., n)‖22.

Repeating this for each candidate regulator profile

in Xj yields a series of optimal time lags. We then

reformulated the expression matrix Xj for the can-

didate regulators by applying the optimal shift to

each column, and truncating the columns to a com-

mon length based on the maximum shift, obtaining

an (n − smax × k) time-lag aligned matrix Φj . The

target expression profile yj was then also truncated
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to a corresponding (n − smax × 1) vector ỹj , where

ỹj = yj(smax, ..., n).

The above approach has two major problems.

First, it is unlikely that real time lags are aligned

with the sampling period, and more typically oc-

cur within a time period. Previous studies 27; 11

have shown that continuous representation of dis-

crete time series data has positive effects. Second,

because each transcription factor may regulate mul-

tiple target genes, it is more reliable to consider the

time lag between a TF and its entire set target genes

rather than a single gene. That is, a common time

lag can then be used between a TF and its entire

target set. Considering that there is always noise

in microarray measurements, the TF/gene-set time

lag should be more robust than a single TF-gene

time lag estimate. In practice, we first cluster the

genes, then use cubic spline interpolation to repre-

sent all the gene profiles in continuous cubic polyno-

mial functions. The optimal time lag between a TF

xij and a target gene yj is then given by:

s∗ij=argmin
s

∫ n−s

s+1

∑

p∈cluster(j)
|f(xij)− f(yjp)|

(12)

where s can be arbitrarily small time step (we use

1/10 of the original time period). We then use the

same procedure to construct Φj for each target gene

yj with time point dense n inverse proportional to s.

2.4. Gene Competition

To the best of our knowledge, almost all previous re-

search on inferring TF-gene regulations has focused

on the TF-gene relations only, while the potential

competition effects between genes that share com-

mon TFs are neglected. For example, if a gene y1
and gene y2 are co-activated by a common set of

transcription factors X1, then the expression profile

of gene y1 may not solely depend on the expression

profile of X1, but rather the expression profile of y2
may dampen the expression profile of y1. We there-

fore take gene competition effects into account in our

linear model (3) since it is not obvious how to adopt

this idea in the kernelized model.

Specifically, consider the formulation (3). For a

cluster of k genes, the corresponding set of weights

W consists of an l×k matrix, where each column in-

dicates how much one of the k genes responds to the

l candidate regulators, and each row indicates how

much a regulator is selected by the genes. To model

the gene competition effect, one can force the sum

of each row of W to be smaller than a given thresh-

old. To properly determine the values of the these

thresholds requires prior knowledge, but we simply

set them to be all 1’s in our initial investigation.

2.5. Alternative Loss Minimization

To this point we have focused on training under an

L2 norm reconstruction loss. In our implementation,

we also investigated the cross entropy loss, as it is

commonly used as an alternative to the L2 norm

when output targets are bounded. For an observed

vector y and an estimated vector ŷ, the cross entropy

loss is defined as:

lossCrsEtp(y, ŷ)

= −
∑

i

yi ln ŷ′i + (1− yi) ln (1− ŷ′i)

where ŷ′i = 1
1+e−ŷi .

3. Experimental Results

We conducted experiments on real cell cycle data to

evaluate our approach. In particular, we compared

our kernel method (both L2 loss and cross entropy

loss) to the global regularization approach (with and

without gene competition effect), the standard inde-

pendent local predication approach, and a prototype

based linear regression method adapted from 24. We

applied the methods to inferring the structure of the

regulatory network of the yeast cell cycle. In our ex-

periments, we assumed all transcription regulations

work through activators rather than inhibitors; that

is, we assumed the w parameters are nonnegative in

the linear regressions.

Yeast contains more than 6000 genes, while only

a subset of these genes are cell cycle regulated. It

is known there are 9 important transcription factors

(TFs) that regulate the cell cycle process 22, namely:

SWI4, SWI6, MPB1, FKH1, FKH2, NDD1, MCM1,

ACE2 and SWI5. Because many gene regulatory re-

lationships in Yeast have already been identified, it is

a commonly used test-bed for evaluating regulatory
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network inference methods. Here we use Cho et al.’s

data 4, and focus on the task of identifying the sub-

set of regulators from the 9 candidate TFs for each

yeast gene that is cell cycle regulated. We choose

a subset of 127 cell cycle regulated genes from the

Cho et al. data 4 to clearly evaluate our approach,

where we could obtain confirmed regulatory relation-

ships from the previous literature 22; 9, or could ob-

tain potential regulation relationships from existing

binding data 22. We re-scaled the expression data to

values between 0 and 1, then clustered the genes into

15 clusters using K-means. (In the images shown in

Figure 1 and 2, the genes are grouped vertically into

the clusters. The number of clusters is chosen by

using visual judgment to achieve a smooth cluster-

ing effect.) Finally, we tested our algorithms on each

cluster. After obtaining the w parameters from each

algorithm, all the parent TFs indicated by values of

w > 10−5 were determined as predicted regulators

for the corresponding genes. For a fair comparison,

the regularization parameters (α and λ) were chosen

to yield the highest F-measure values in each case.

Since the regulatory mechanisms are still not known

for a portion of the 267 genes, we therefore can only

evaluate the results over the 127 genes for which reg-

ulatory relationships are presumed known.

Figure 1 and Figure 2 show the prediction re-

sults on 127 genes for all the six algorithms with and

without applying the cubic spline interpolation for

the time lag problem respectively: locally regular-

ized prediction, prototype based prediction, globally

regularized prediction without considering the within

cluster gene competition effects, globally regularized

prediction considering the within cluster gene com-

petition effects, the kernel model prediction, and the

kernel model prediction with cross entropy loss. The

images compare the performance of the six methods

on inferring regulators from among the 9 candidate

TFs, and shows how they related to the known TF-

based regulatory relationships.

Table 1 and Table 2 compare the performance

of the six algorithms with and without applying the

cubic spline interpolation for the time lag problem.

The precision score measures true positive predic-

tions (tp) divided by true positives plus false positive

predictions (fp). That is, precision = tp/(tp + fp).

Similarly, recall score is measured in terms of the

number of false negative predictions (fn), and is given

by recall = tp/(tp + fn). The F-measure is a stan-

dard combination of both precision (p) and recall (r),

given by F −measure = 2pr/(p+ r). The accuracy

score measures the proportion of the correct predic-

tions. That is, accuracy = (tp+ tn)/(tp+ tn+ fp+

fn).

These results show that the kernel approaches

improve the quality of the regulation relation infer-

ence in general. The globally regularized approaches

have the ability to share regulatory information be-

tween genes within a cluster, leading to better noise

robustness than the local approach. The kernel

approaches outperform the globally regularized ap-

proaches in terms of precision, recall and F-measure

in table 1. For example, in Figure 1, in the group

of genes indexed between 20-50, one can see that a

large set of TFs that were not picked out by any

other approaches are picked out by the kernel ap-

proach (Column 5). Considering the effect of within

cluster gene competition seems not lead to signifi-

cant improvement in our case. However, with appro-

priate upper bound threshold setting and applied in

the kernel methods, we believe it would contribute

to better prediction performance. The idea of using

cubic spline interpolation to better address the time

lag problem is effective, as the overall performance

of all methods is improved.

Although some local errors remain in this region

(and elsewhere), clearly the overall quality of the par-

ent prediction has been improved substantially by

the kernel method. Overall, the prediction quality

achieved by these methods on this data is still some-

what limited, but has improved significantly over the

past few years, and in some sense is remarkable given

the noise exhibited in the expression profiles.

4. Conclusion

In this paper, we have proposed a new kernelized

version of globally regularized risk minimization ob-

jective for learning regulatory networks from gene

expression data. Exploiting the assumption that

genes with similar expression patterns are likely

to be co-regulated, our approach first clusters the

genes, then learns the regulatory relationships by en-

couraging genes with similar expression patterns to

share regulators. Considering that natural TF-gene
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Fig. 1. Results after applying the cubic spline interpolation for regulation time lag problem on the subset of the real gene

expression data from 4, restricted to genes where TF-based regulation information is known or can be inferred from other sources
22; 9. Rows denote target genes in the synthetic experiment. Columns denote candidate regulators (transcription factors). A

white cell denotes a large weight (wij > 10−5) connecting a TF j to a target gene i in the estimated linear model, indicating

that j is inferred to regulate i. A black cell denotes a small weight (wij ≤ 10−5), indicating that j is not inferred to regulate
i. Column 1: local prediction output. Column 2: prototype prediction output. Column 3: global prediction without gene

competition output. Column 4: global prediction with gene competition output. Column 5: Kernel method prediction. Column

6: Kernel method prediction with cross entropy loss. Column 7: ground truth regulatory relationships. Column 8: expression
level data used as input.

Performance Local Prototype Global Global Kernel Kernel

comparison (no compete) (compete) (CE loss)

Accuracy(%) 59.9 55.7 68.3 70.6 66.9 54.1

Precision(%) 22.1 20.6 26.9 28.3 31.4 25.4

Recall(%) 42.5 45.2 37.1 33.9 60.2 71.0

F-measure 29.1 28.3 31.2 30.9 41.3 37.4

Performance Local Prototype Global Global Kernel Kernel

comparison (no compete) (compete) (CE loss)

Accuracy(%) 57.5 55.0 67.7 67.6 49.7 54.6

Precision(%) 22.1 20.9 29.7 29.2 25.1 22.2

Recall(%) 47.5 47.5 48.9 47.5 81.0 53.8

F-measure 30.2 29.0 36.9 36.2 38.4 31.4

regulation rules are likely to obey canalyzing rules
13; 19; 20; 14, we proposed to kernelize the linear

model to map the independent linear relations be-

tween transcription factors to more complex relations
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Fig. 2. Results without applying the cubic spline interpolation for regulation time lag problem on the subset of the real gene

expression data from 4, restricted to genes where TF-based regulation information is known or can be inferred from other sources
22; 9. Rows denote target genes in the synthetic experiment. Columns denote candidate regulators (transcription factors). A
white cell denotes a large weight (wij > 10−5) connecting a TF j to a target gene i in the estimated linear model, indicating

that j is inferred to regulate i. A black cell denotes a small weight (wij ≤ 10−5), indicating that j is not inferred to regulate
i. Column 1: local prediction output. Column 2: prototype prediction output. Column 3: global prediction without gene

competition output. Column 4: global prediction with gene competition output. Column 5: Kernel method prediction. Column

6: Kernel method prediction with cross entropy loss. Column 7: ground truth regulatory relationships. Column 8: expression
level data used as input.

in high dimensional space. We conjecture that the

kernelized model can avoid the problem of enumer-

ating all the canalyzing regulations and can discover

the non-linear relations between transcription factors

to better construct the target gene profile and more

accurately infer the TF-gene causal relations. To ad-

dress the regulation time lag problem, we proposed

to use cubic spline interpolation to extend discrete-

time gene profiles to continuous-time profiles, allow-

ing a higher resolution search for alignments between

transcription factors and gene clusters. This makes

the time lag searching more robust to noise. We also

considered the within-cluster gene competition effect

that is neglected by most gene regulatory network in-

ference methods in the literature.

Our experimental results yeast cell cycle data

show that the kernel approach is more effective at

identifying important (transcription factor based)

regulatory mechanisms than the standard indepen-

dent approach, the prototype based approach, and

the globally regularized approach. Thus far, we

have only considered using gene expression data in

the learning process. Further prediction improve-

ments are likely to come from incorporating fur-

ther sources of biologically relevant data, such as

the within-cluster gene competition mRNA upper

bound, binding information 22, or other forms of

prior knowledge beyond the co-regulation assump-

tion made here. Moreover, as an effective strategy,

the kernel method combined with the L1 norm fea-

ture selection might be extended to resolve other

similar problems in bioinformatics area and other re-
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search areas.
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