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Abstract. We propose a new bi-clustering algorithm, LinCoh, for find-
ing linear coherent bi-clusters in gene expression microarray data. Our
method exploits a robust technique for identifying conditionally corre-
lated genes, combined with an efficient density based search for cluster-
ing sample sets. Experimental results on both synthetic and real datasets
demonstrated that LinCoh consistently finds more accurate and higher
quality bi-clusters than existing bi-clustering algorithms.
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1 Introduction

Gene expression microarray data analysis interprets the expression levels of thou-
sands of genes across multiple conditions (also called samples). Such a study
enables the language of biology to be spoken in mathematical terms; however, it
remains a challenge to extract useful information from the large volume of raw
expression data.

One central problem in gene expression microarray data analysis is to iden-
tify groups of genes that have similar expression patterns in a common sub-
set of conditions. Standard clustering methods, such as k-means clustering [4],
hierarchical clustering [21] and self-organizing maps [20], are ill-suited to this
purpose for two main reasons: that genes exhibit similar behaviors only under
some, but not all conditions, and that genes may participate in more than one
functional process and hence belong to multiple groups. Bi-clustering [9,16] is
intended to overcome the limitations of standard clustering methods by iden-
tifying a group of genes that exhibit similar expression patterns in a subset of
conditions. Bi-clustering was first applied to gene expression analysis a decade
ago [3], subsequently leading to dozens of other bi-clustering algorithms. Never-
theless, the general bi-clustering problem is NP-hard [3]. Efforts were invested
in designing bi-clustering algorithms, mostly heuristics, for finding postulated
types of bi-clusters.
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There are several types of bi-clusters that have been sought previously, in-
cluding (a) the constant value model, (b) the constant row model, (c) the con-
stant column model, (d) the additive coherent model, where each row (or column)
is obtained by adding a constant to another row (or column, respectively), and
(e) the multiplicative coherent model, where each row (or column) is obtained
by multiplying another row (or column, respectively) by a constant value. In this
paper, we continue to exploit the most general type-(f) linear coherent model [7]
(see Figure 1), in which each row is obtained by multiplying another row by a
constant value and then adding a constant. We further assume that bi-clusters
are arbitrarily positioned and may overlap each other [15]. The most biologically
meaningful types of bi-clusters to be sought should map to the ultimate purpose
of identifying groups of genes that co-participate in certain genetic regulatory
process. For example, housekeeping genes are those that constitutively express
in most conditions, and they could be identified in the first two bi-cluster models
(a) and (b). Most of the existing bi-clustering algorithms seek either type-(d) ad-
ditive bi-clusters or type-(e) multiplicative bi-clusters [7]. Mathematically, the
type-(f) linear coherent model is strictly more general than all the other five
models.
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1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

x y z w
1.2 1.2 1.2 1.2
0.8 0.8 0.8 0.8
1.5 1.5 1.5 1.5
0.6 0.6 0.6 0.6

x y z w
1.2 0.8 1.5 0.6
1.2 0.8 1.5 0.6
1.2 0.8 1.5 0.6
1.2 0.8 1.5 0.6

x y z w
1.2 0.8 1.5 0.6
1.0 0.6 1.3 0.4
2.0 1.6 2.3 1.4
0.7 0.3 1.2 0.3

x y z w
2.0 4.0 8.0 1.0
1.0 2.0 4.0 0.5
4.0 8.0 16.0 2.0
1.0 2.0 4.0 0.5

x y z w
2.0 4.0 3.0 5.0
1.5 2.5 2.0 3.0
2.3 4.3 3.3 5.3
4.5 8.5 6.5 10.5

(a) (b) (c) (d) (e) (f)

Fig. 1. The six different bi-cluster types.

The key idea in our new algorithm, LinCoh, for finding type-(f) linear coher-
ent bi-clusters is illustrated in Figure 2. Essentially, a pair of genes participates in
a linear coherent bi-cluster must be evidenced by a non-trivial subset of samples
in which these two genes are co-up-regulated (or co-down-regulated). Therefore,
the scatter plot of their pairwise expression levels, see Figure 2, where every
point (x, y) represents a sample in which the two genes have expression lev-
els x and y respectively, must show a diagonal band with a sufficient number
of sample points. The LinCoh algorithm starts with composing this non-trivial
supporting sample set for each gene pair, then to cluster these so-called outer
sample sets. Each outer sample set cluster, together with the associated genes
and inner samples, is filtered to produce a final bi-cluster.

We compare our LinCoh algorithm to four most popular bi-clustering algo-
rithms: Cheng and Church’s algorithm named after CC [3]; the order preserving
sub-matrix algorithm denoted as OPSM [2]; the iterative signature algorithm de-
noted as ISA [10]; and the maximum similarity bi-clustering algorithm denoted
as MSBE [14]. The first three algorithms have been selected and implemented
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(a) Negative correlation.
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(b) Positive correlation.

Fig. 2. (a) illustrates two yeast genes YIL078W and YLL039C that have nega-
tive expression correlation under a subset of conditions; the red conditions pro-
vide a stronger evidence than the blue conditions, whereas the green conditions
do not suggest any correlation. Similarly in (b), genes YIL078W and YIL052C
show a positive expression correlation.

in a survey [17]. Cheng and Church defined a merit score called mean squared
residue to evaluate the quality of a bi-cluster, and CC is a greedy algorithm for
finding bi-clusters of score no less than a given threshold [3]. OPSM is a heuristic
algorithm attempting to find within a gene expression matrix the sub-matrices,
i.e. bi-clusters, in each of which the genes have the same linear ordering of ex-
pression levels [2]. Another bi-cluster quality evaluation scheme is proposed in
[10] using gene and condition signatures, and the ISA is proposed for finding the
corresponding good quality bi-clusters. In particular, a randomized ISA is put in
place when the prior information of the expression matrix is not available. The
last algorithm, MSBE, is the first polynomial time bi-clustering algorithm that
finds optimal solutions under certain constraints [14].

The rest of the paper is organized as follows: Section 2 presents the details of
our LinCoh algorithm. In Section 3, we first introduce the quality measurements
for bi-clustering results; then describe how synthetic datasets were generated,
followed by the bi-clustering results and discussion; lastly we present the two
real datasets on yeast and e.coli respectively, as well as the bi-clustering results
and discussion. We conclude the paper in Section 4 with some remarks on the
advantages and disadvantages of our LinCoh algorithm.

2 The LinCoh algorithm

Let E(G,S) be an n×m gene expression data matrix, where G = {1, 2, . . . , n}
is the set of gene indices and S = {1, 2, . . . ,m} is the set of sample (condition)
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indices. Its element eij is the expression level of gene i in sample j. Our LinCoh
algorithm consists of two major steps, described in the next two subsections.

2.1 Step one: establishing pairwise gene relations

For each pair of genes p, q ∈ {1, 2, . . . , n}, we plot their expression levels in all
samples in a 2D plane, as shown in Figure 2, where a point (x, y) represents a
sample in which gene p has expression level x and gene q has expression level y.
The goal of this step is to detect a correlation between every pair of genes on a
subset of samples, if any. Such a subset of samples must evidence the correlation,
in the way that the two genes are co-up-regulated (or co-down-regulated) in these
samples [13]. We define a beam Bθ,β,γ in the 2D plane to be the set of points on
the plane that are within distance 1

2β to a straight line that depends on θ and
γ. Here θ is the beam angle, β is the beam width, and γ is the beam offset. They
are all search parameters, but we are able to pre-determine some best values or
ranges of values for them.

Let µp and σp (µq and σq) denote the mean expression level of gene p (q,
respectively) across all samples and the standard deviation. To identify the sub-
set of supporting samples for this gene pair, Sθ,β,γ = S ∩ Bθ,β,γ , we seek for a
beam Bθ,β,γ in the 2D plane that aligns approximately the main diagonal (or
the antidiagonal) of the rectangle defined by {(µp − σp, µq − σq), (µp + σp, µq −
σq), (µp + σp, µq + σq), (µp − σp, µq + σq)}. Such an approximate alignment op-
timizes the following objective function, which robustly leads to good quality
bi-clusters:

max
θ,β,γ

WSθ,β,γ
·DSθ,β,γ

subject to:
∣∣corr(E(p, Sθ,β,γ), E(q, Sθ,β,γ)

)∣∣ ≥ tcc.

In the above maximization problem, DSθ,β,γ
is the vector of the Euclidean dis-

tances of the samples inside the beam, i.e. Sθ,β,γ , to the line passing through
(µp, µq) and perpendicular to (called the midsplit line of) the beam center line;
WSθ,β,γ

is a weight vector over the samples in Sθ,β,γ , and we use Shepard’s
function wj = drj/

∑
drj with parameter r ≥ 0 to weight sample j ∈ Sθ,β,γ (to

weight more on distant samples but less on samples nearby the midsplit line); In
the constraint, |corr(·, ·)| is the absolute correlation coefficient between the two
genes p and q, calculated over only the samples in Sθ,β,γ ; tcc is a pre-determined
correlation threshold.

The output of the maximization problem is Sθ,β,γ , which is either empty,
indicating that no meaningful relationship between the two genes was found,
or otherwise a subset of samples that evidence a meaningful correlation be-
tween genes p and q. According to our extensive preliminary experiments, the
bi-clustering results are of high quality when the correlation threshold tcc is larger
than 0.75; and it is set to 0.90 and 0.75, respectively, on synthetic datasets and
real datasets.
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We implement a heuristic process to search for the beam, whose center
line is initialized to be the line passing through the main diagonal (for pos-
itive correlation) or the antidiagonal (for negative correlation) of the rectan-
gle in the expression plot. The beam width β is fixed at a certain portion of
4σpσq/

√
σp

2 + σq
2; again supported by the preliminary experiments, a constant

portion in between 0.8 and 1.0 is sufficient to capture most meaningful correla-
tions; and we fix it at 0.8 for both synthetic datasets and real datasets. That
is, β = 0.8 × 4σpσq/

√
σp

2 + σq
2. To determine the beam angle θ in the pos-

itive correlation case, we define the search axis to be the midsplit line of the
main diagonal; a small interval is placed on the search axis centering at (µp, µq),
which is for a pivot point to float within; around each position of the pivot point,
whose distance to the center point (µp, µq) is denoted as γ, different angles (the
θ) are searched over to find a beam center line; each resultant beam is tested
for the constraint satisfaction in the maximization problem, and discarded oth-
erwise; among all those beams that satisfy the constraint, the one maximizing
the objective function is returned as the target beam.

For evaluating the objective function, we have tested multiple values of r and
found that 0 gives the most robust bi-clustering results. Therefore, r is set to 0
as default. For each sample j inside the beam, its distance dj to the mid-split
line of the beam center line is rounded to 0 or 1 using a threshold of

√
σp

2 + σq
2.

When the target beam is identified, though might not be the true optimum to
the objective function, the sample set Sθ,β,γ is further partitioned into outer
sample set (containing the samples with distance dj rounded to 1) and inner
sample set (containing the rest). Gene pairs, together with non-empty outer and
inner sample sets, are sent to Step two for clustering.

2.2 Step two: sample set clustering

Step one generates an outer sample set and an inner sample set for each gene
pair. In this step, two n × n matrices are constructed: in the outer matrix Mo,
the element mo

pq is the outer sample set for gene pair p and q; likewise, in the

inner matrix M i, the element mi
pq is the inner sample set for gene pair p and q.

We next process these two matrices to robustly find bi-clusters.
First we want to filter out small outer sample sets that indicate insignificant

correlations for gene pairs. To this purpose, we select roughly the largest 0.15%
outer sample sets among all for clustering, which are of 99.7% confidence. This
confidence level is set after testing on a randomly generated datasets, with 68%,
95%, 99.7% confidence levels according to the 68-95-99.7 rule. Observing that
two disjoint gene pairs could have the same outer sample sets but very differ-
ent expression patterns, simply using outer sample sets to construct bi-clusters
might lead to meaningless bi-clusters. In our LinCoh algorithm, genes are used
as bridges to group similar outer sample sets to form bi-clusters, since linear
correlation is transitive. We first define the similarity between two outer sample
sets mo

pq and mo
rs as sim(mo

pq,m
o
rs) = |mo

pq ∩mo
rs|/|mo

pq ∪mo
rs|, which is a most

popular measure in the literature. Next, we rank genes in the descending order
of the number of associated non-empty outer sample sets. Iteratively, the gene
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at the head of this list is used as the seed gene, to collect all its associated (non-
empty) outer sample sets. These outer sample sets are partitioned into clusters
using a density based clustering algorithm similar to DBSCAN [5], and the dens-
est cluster is returned, which is defined as a cluster whose central point has the
most close neighbors (see the pseudocode in the Appendix). An initial bi-cluster
is formed on the union S1 of the outer sample sets in the densest cluster, and
the set G1 of the involved genes.

The quality of the bi-cluster (G1, S1) is evaluated by its average absolute
correlation coefficient,

aacc(G1, S1) =

∑
p,q∈G1

|corr(E(p, S1), E(q, S1))|
(|G1|2 − |G1|)

. (1)

The initial bi-cluster (G1, S1) is refined in three steps to locally improve its
quality. In the first step, all samples in S1 are sorted in decreasing frequency of
occurrence in all the outer sample sets of the seed gene; the lowest ranked sample
is removed if this removal improves the quality of the bi-cluster, or otherwise
the first step is done. Secondly, every gene in G1 is checked to see whether
its removal improves the quality of the bi-cluster, and if so it is removed from
G1. At the end, if the minimum gene pairwise absolute correlation coefficient of
the bi-cluster is smaller than a threshold, the bi-cluster is considered as of low
quality and discarded. By examining values from 0.50 to 0.99, our preliminary
experiments showed that a high threshold in between 0.7 and 0.9 is able to
ensure good quality bi-clusters, and it is set to 0.8 in all our final experiments.
In the last step of bi-cluster (G1, S1) refinement, the inner sample sets of the gene
pairs from G1 are collected; their samples are sorted in decreasing frequencies
in these inner sample sets; using this order, samples are added to S1 as long as
their addition passes the 0.8 minimum pairwise absolute correlation coefficient.
A final bi-cluster (G1, S1) is thus produced.

Subsequently, all genes from G1 are removed from the gene list, and the
next gene is used as the seed gene for finding the next bi-cluster. The process
iterates till the gene list becomes empty. We remark that a gene can participate
in multiple bi-clusters, but it serves as a seed gene at most once. At the end,
when two bi-clusters overlap more than 60% area, the one of smaller size is
treated as redundant and discarded [13]. A pseudocode of our LinCoh algorithm
1 is provided in the Appendix for the interested readers.

3 Results and discussion

We examine the LinCoh algorithm, and make comparisons with four other ex-
isting bi-clustering algorithms, CC, OPSM, ISA, and MSBE (their parameter
settings follow the previous works [17,14]), on many synthetic datasets and two
real gene expression microarray datasets on Saccharomyces cerevisiae (yeast) and
Escherichia coli (e.coli) respectively. Essentially, synthetic datasets are used for
evaluating absolute performance, since we know the ground truth; while the real
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datasets are mainly used for evaluating relative performance. Consequently we
have different sets of performance measurements on synthetic and real datasets.

On synthetic datasets, bi-clustering algorithms are evaluated on their abil-
ity to recover the implanted (true) bi-clusters. Prelić’s gene match score and
overall match score [17] are adopted. Let C and C∗ denote the set of output
bi-clusters from an algorithm and the set of true bi-clusters for a dataset. The
gene match score of C with respect to the target C∗ is defined as scoreG(C, C∗) =
1
|C|

∑
(G1,S1)∈C max(G∗

1 ,S
∗
1 )∈C∗

|G1∩G∗
1 |

|G1∪G∗
1 |
, which is essentially the average of the max-

imum gene match scores of bi-clusters in C with respect to the target bi-clusters.
Similarly, the sample match score scoreS(C, C∗) can be defined by replacing gene
sets with the corresponding sample sets in the above. The overall match score
is then defined as their geometric mean, i.e.

score(C, C∗) =
√
scoreG(C, C∗)× scoreS(C, C∗).

On real datasets, the bi-clusters discovered by an algorithm are mapped to
known biological pathways, defined in the GO functional classification scheme
[1], the KEGG pathways [11], the MIPS yeast functional categories [18] (for
yeast dataset), and the EcoCyc database [12] (for e.coli dataset), to obtain their
gene functional enrichment score as implemented in [13]. The average absolute
correlation coefficients (aacc’s) of the discovered bi-clusters are also used to
compare different algorithms.

3.1 Synthetic datasets

Noise resistance test: This experiment examines how well a bi-clustering
algorithm can recover implanted bi-clusters. We follow Prelić’s testing strategy
to first generate a 100× 50 background matrix (i.e., 100 genes and 50 samples),
using a standard normal distribution for the matrix elements; we then embed
ten 10 × 5 non-overlapping linear coherent bi-clusters along the diagonal; later
for each vector of the five expression values, the first two of them are set to
down-regulated, the last two are set to up-regulated, and the middle one is
non-regulated; lastly, we add noise to the embedded bi-clusters at six different
noise levels (ℓ = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) by perturbing the entry values
so that the resultant values are ℓ away from the original values. The generation
is repeated ten times to give ten matrices.

The same simulation process is done to generate synthetic datasets contain-
ing additive bi-clusters, when we compare the bi-clustering algorithms on their
performance to recover additive bi-clusters only (which is a special case of linear
coherent bi-clusters).

Figure 3 shows the gene match scores of all five bi-clustering algorithms at
six different noise levels, on their performance of recovering linear coherent bi-
clusters and additive bi-clusters, respectively. Their overall match scores and
gene discovery rates (defined as the percentage of genes in the output bi-clusters
over all the genes in the true bi-clusters) can be found in Figures 8 and 9 in
the Appendix. In terms of match scores, Figures 3 and 8 clearly show that
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our LinCoh outperformed all the other four algorithms, ISA ranked the second,
and the other three performed quite poorly. In terms of gene discovery rate,
again LinCoh outperformed all the other four algorithms. We remark that gene
discovery rate can be trivially lifted up by simply output more bi-clusters. It is
not a main measure used in this work, but a useful measure in conjunction with
match scores.
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Fig. 3. The gene match scores of the five algorithms on recovering linear coherent
bi-clusters and additive bi-clusters at six different noise levels.

Overlapping test: Individual genes can participate in multiple biological pro-
cesses, yielding bi-clusters that overlap with common genes in an expression
matrix. Bi-clusters might also overlap with a subset of samples. This experi-
ment is designed to examine the ability of different bi-clustering algorithms to
recover overlapping bi-clusters. As before, we consider type-(f) linear coherent
bi-clusters and type-(d) additive bi-clusters, at a fixed noise level of ℓ = 0.1.

Again, ten 100 × 50 background matrices are generated using a standard
normal distribution for the matrix elements; into each of them, two 10× 10 bi-
clusters are embedded, overlapping with each other by one of the following six
cases: 0×0, 1×1, 2×2, 3×3, 4×4, and 5×5. Previous simulation studies suggested
to replace the matrix elements in the overlapped area with a random value; we
expect, however, these overlapping genes to obey a reasonable logic such as
the AND gate and the OR gate leading to a union and an additive behavior.
Therefore, in the union overlap model, the matrix entries in the overlapped
area preserve linear coherency in both bi-clusters (consequently, the overlapped
area extends its linear coherency into both bi-clusters on those samples in the
overlapped area); and in the additive overlap model, these entries take the sum
of the gene expression levels from both bi-clusters.

Figure 4 shows the gene match scores of the five bi-clustering algorithms
in this experiment. Their overall match scores and gene discovery rates under
the union overlap model are plotted in Figures 10 and 11 in the Appendix.
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Fig. 4. The gene match scores of the five algorithms for recovering the overlap-
ping linear coherent and additive bi-clusters, under the union overlap model.

The results of the additive overlap model are in Figures 12, 13, and 14 in the
Appendix. From all these results, one can see that our LinCoh outperformed the
other four algorithms; OPSM and MSBE performed worse, but similarly to each
other; CC performed the worst; and ISA demonstrated varying performance.

3.2 Real datasets

The yeast dataset is obtained from [8], containing 2993 genes on 173 samples; the
e.coli dataset (version 4 built 3) is from [6], which contains initially 4217 genes
on 264 samples. Genes with small expression deviations were removed from the
second dataset, giving rise to 3016 genes. Such a process ensures that all five
bi-clustering algorithms can run on the dataset. In particular, it took two weeks
for LinCoh to run on each dataset using a 2.2GHz CPU node of 2.5GB memory.
The performance of an algorithm on these two real datasets is measured in gene
functional enrichment score [13]. First, the P -value of each output bi-cluster is
defined using its most enriched functional class (biological process).

The probability of having r genes of the same functional class in a bi-cluster
of size n from a genome with a total of N genes can be computed using the hy-
pergeometric function, where p is the percentage of that functional class of genes
over all functional classes of genes encoded in the whole genome. Numerically
[13],

Pr(r|N, p, n) = ( pNr ) · ( (1−p)N
n−r )/(Nn ).

Such a probability is taken as the P -value of the output bi-cluster enriched with
genes from that functional class [13]. The smallest P -value over all functional
classes is defined as the P -value of the output bi-cluster — the smaller the P -
value of a bi-cluster the more likely its genes come from the same biological
process. For each algorithm, we calculate the fraction of its output bi-clusters
whose P -values are smaller than a significance cutoff α.

Figure 5 compares the five algorithms using six different P -value cutoffs, eval-
uated on the GO database. Results on the KEGG, MIPS, and Regulon databases



10

LinCoh OPSM ISA CC MSBE
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bi−clustering Algorithms

P
ro

po
rt

io
n 

of
 B

i−
cl

us
te

rs
 p

er
 S

ig
ni

fic
an

ce
 L

ev
el

Functional Enrichment Test of Yeast Dataset based on GO database

 

 
α = 5%
α = 1%
α = 0.5%

α = 1e−3

α = 1e−4

α = 1e−5

ISA LinCoh OPSM CC MSBE
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bi−clustering Algorithms

P
ro

po
rt

io
n 

of
 B

i−
cl

us
te

rs
 p

er
 S

ig
ni

fic
an

ce
 L

ev
el

Functional Enrichment Test of E.COli Dataset based on GO database

 

 
α = 5%
α = 1%
α = 0.5%

α = 1e−3

α = 1e−4

α = 1e−5

Fig. 5. Portions of discovered bi-clusters by the five algorithms on the two real
datasets that are significantly enriched the GO biological process, using six dif-
ferent P -value cutoffs.

are in Figures 15 and 16 in the Appendix. All these results show that our LinCoh
consistently performed well; OPSM and ISA did not perform consistently on the
two datasets across databases; and that MSBE and CC did not perform as well
as the other three algorithms.

One potential issue with the P -value based performance measurement is that
P -values are sensitive to the bi-cluster size [13]; in general, larger bi-clusters
tend to produce more significant P -values. Table 1 in the Appendix summa-
rizes the statistics of the bi-clusters produced by the five algorithms. The last
column in the table records the numbers of unique functional terms enriched
by the produced bi-clusters. On yeast dataset, when measured by the gene en-
richment significance test, OPSM performed very well (Figure 5, left); yet its
bi-clusters only cover one functional term on the GO and KEGG databases
and two terms on MIPS database. Such a phenomenon suggests that its bi-
clustering result is biased to a group of correlated genes, missed by the P -value
based significance test. Furthermore, we generated all the gene pairs with ab-
solute correlation coefficient greater than or equal to 0.8 over all the samples
for both the yeast and e.coli datasets. Table 2 in the Appendix shows the num-
bers of common GO terms and their counts. Among these strongly correlated
gene pairs, many do not even have one common GO term. Table 3 in the Ap-
pendix shows the top 10 counted common GO terms (full table can be found at
‘http://www.cs.ualberta.ca/~ys3/LinCoh’).

The above two potential issues hint that the P -value based evaluation is
meaningful but has limitations. We propose to use the average absolute cor-
relation coefficient over all gene pairs in a bi-cluster defined in Eq. (1) as an
alternative assessment of the quality of a linear coherent bi-cluster. Figure 6
shows the box plot of these correlation values for the bi-clusters produced by
the five algorithms on the two real datasets. From the figure, one can see that
our LinCoh and OPSM significantly outperformed the other three algorithms.
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Additionally, the minimum absolute correlation coefficient over all gene pairs
in a bi-cluster can also be adopted as a quality measurement. Figure 17 in the
Appendix shows these results.
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Fig. 6. Box plots of the average absolute correlation coefficients obtained by the
five bi-clustering algorithms on yeast and e.coli datasets, respectively.

Figure 6 shows that OPSM produced bi-clusters with very high linear co-
herence. But the numbers of samples in its bi-clusters are much smaller than
those in LinCoh’s bi-clusters, as shown in Table 1 in the Appendix (tens versus
hundreds). This suggests that very closely interacting gene pairs can have small
empirical correlation coefficients on a subset of samples, largely due to noise and
measurement errors. In fact, there is always a trade-off between bi-cluster coher-
ence and its size. Thus, to compare algorithms in a less sample-size biased way,
we replaced for each bi-cluster its average absolute correlation coefficient by the
99% confidence threshold using the number of samples in the bi-cluster [19], and
box plotted these values in Figure 18 in the Appendix. They show much more
comparable performance between LinCoh and OPSM.

4 Conclusions

In this paper, we proposed a new bi-clustering algorithm, LinCoh, for finding
linear coherent bi-clusters in a gene expression matrix. The algorithm has two im-
portant steps, beam detection for pairwise gene correlations and density based
outer sample set clustering. Our experiments on synthetic and real datasets
demonstrate that LinCoh consistently performed well. Using real datasets, we
also showed some limitations of the widely adopted functional enrichment mea-
surement, and proposed to use average absolute correlation coefficient as an
alternative measure for bi-clustering quality. With its outperformance over the
compared four popular algorithms, LinCoh can serve as another useful tool for
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microarray data analysis, including bi-clustering and genetic regulatory network
inference.

One disadvantage of LinCoh is its large memory and extensive computing
time requirement, due to constructing the outer and inner sample set matrices.
It takes O(n2mp) to compute the sample set matrices where n is the number
of genes and mp is the number of parameters θ, β and γ. The memory required
for storing the matrices is O(n2ms) where n is the number of genes and ms is
the average size of the sample set elements. It takes weeks and up to 1 Giga-
byte memory to run experiments on the e.coli dataset. Improvements in beam
detection and sample set clustering can also achieve significant speed-ups.
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Appendix

(a) Unobvious Bi-cluster. (b) Obvious Bi-cluster.

Fig. 7. An example of a constant row bi-cluster in the gene expression matrix.
(a) shows a gene expression matrix without any obvious bi-clusters; (b) shows
after swapping rows and columns, a constant row bi-cluster becomes salient.
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Fig. 8. The overall match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, at six different noise levels.
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Fig. 9. The gene discovery rates of the five algorithms for recovering linear co-
herent and additive bi-clusters, at six different noise levels.
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Fig. 10. The overall match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using
the union overlap model.
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Fig. 11. The gene discovery rates of the five algorithms for recovering linear
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Algorithm 1 The LinCoh Algorithm

Input An n×m real value matrix A(I, J), Tclose, TminCC

Output A set of bi-clusters A(gi, si), where gi ⊆ I and si ⊆ J .

for i = 1 to n do
for j = i + 1 to n do

MO(i, j) = NULL, MI(i, j) = NULL;
θrec = NULL, βrec = NULL, γrec = NULL;
for A set of beam parameters (θ, β, γ) do

if WSouter(θ,β,γ)
·DT

Souter(θ,β,γ)
> |MO(i, j)| then

MO(i, j) = Souter(θ,β,γ);
θrec = θ, βrec = β, γrec = γ;

end if
end for
MI(i, j) = Sinner(θrec,βrec,γrec);

end for
end for

for i = 1 to n do
for j = i + 1 to n do

if MO(i, j) < µss + α · σss then
MO(i, j) = NULL, MI(i, j) = NULL;

end if
end for

end for

for i = 1 to n do
SSi =

∪
j∈J(MO(i, j));

end for
GeneListss = DescendSort(Genes) based on |SSi| ̸= NULL of each i ∈ I;
BiclusterPool = NULL;
while GeneListss ̸= EMPTY do

SeedGene = Pop(GeneListss);
Construct similarity matrix Matrixss for SSseedGene elements based on

MS(SSi, SSj) =
|SSi∩SSj |
|SSi∪SSj |

;

Find the centroid sample set SScentroid that has the most close (MS(Si, Sj) ≥
Tclose) neighbors, SSneighbors;
GenePool =

∪
(Gi ∈ GSScentroid

∪
GSSneighbors);

SamplePool =
∪
(Sj ∈ SScentroid

∪
SSneighbors);

BiClusterinitial = A(GenePool, SamplePool);
BiClusterrefined = RefineBicluster(BiClusterinitial)
if MinAbsCC(BiClusterrefined) ≥ TminCC then

BiclusterPool.add(BiClusterrefined);
end if

end while
Biclustersfinal = RedundantRemoval(BiclusterPool)
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Fig. 12. The gene match scores of the five algorithms for recovering linear co-
herent and additive bi-clusters, under six different amounts of overlap using the
additive overlap model.
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Fig. 13. The overall match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using
the additive overlap model.
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Fig. 15. Portions of yeast bi-clusters that are significantly enriched over different
P -values in the MIPS pathway and KEGG pathway.
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Fig. 16. Portions of e.coli bi-clusters that are significantly enriched over different
P -values in the KEGG pathway and experimentally verified regulons.
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Fig. 17. The box plots of minimum absolute correlation coefficients of the bi-
clusters produced by the five algorithms on the yeast and e.coli datasets.
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#Unique terms enriched
#Bi-clusters µ|gene| σ|gene| µ|sample| σ|sample| (GO, KEGG, MIPS/regulons)

yeast:
LinCoh 100 61.84 38.43 133.09 18.09 5, 7, 5
ISA 47 67 34.54 8.4 1.78 15, 13, 18

OPSM 14 423.29 728.95 9.07 5.14 1, 1, 2
MSBE 40 19.25 8.32 18.68 8.22 8, 4, 6
CC 10 297.7 304.18 60.8 23.46 6, 4, 8

e.coli:
LinCoh 100 9.63 7.66 141.43 34.04 24, 24, 22
ISA 34 124.21 42.18 13.88 6.11 11, 10, 13

OPSM 14 419.29 744.35 8.93 4.8 8, 4, 5
MSBE 9 82.67 18.1 80.22 19.18 1, 3, 4
CC 10 309.9 950.15 31.4 81.74 2, 2, 2

Table 1. Statistics of different algorithms’ bi-clustering results and the numbers
of functional terms enriched on different databases.

Term count yeast e.coli

0 909 2680

1 18860 3485

2 7898 1533

3 1839 490

4 165 239

5 30 52

6 6 18

7 4 0

Overall 28802 5817

Table 2. For all the gene pairs with absolute correlation coefficient ≥ 0.8, the
number of pairs that have between 0 and 7 common GO terms.

yeast e.coli

GO term Count GO term Count

GO:0006412 8353 GO:0006412 811
GO:0000723 1920 GO:0008652 680
GO:0000027 1615 GO:0001539 388
GO:0000028 1070 GO:0006810 317
GO:0006365 969 GO:0006355 234
GO:0006413 893 GO:0006811 195
GO:0030488 782 GO:0006865 183
GO:0006364 720 GO:0006260 127
GO:0030490 683 GO:0046677 115
GO:0006360 424 GO:0008152 111

Table 3. The top 10 gene pairs’ common GO terms and their counts.
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Fig. 18. The box plots of the 99% confidence thresholds of the average absolute
correlation coefficients of the bi-clusters, using the number of samples in each
bi-cluster, produced by the five algorithms on the yeast and e.coli datasets.


