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1. Introduction

Gene expression microarray data analysis interprets the expression levels of thou-

sands of genes across multiple conditions (also called samples). Such a study enables

the language of biology to be spoken in mathematical terms; however, it remains

a challenge to extract useful information from the large volume of raw expression

data.

One central problem in gene expression microarray data analysis is to identify

groups of genes that have similar expression patterns in a common subset of con-

ditions. Standard clustering methods, such as k-means clustering [4], hierarchical

clustering [21] and self-organizing maps [20], are ill-suited to this purpose for two

main reasons: that genes exhibit similar behaviors only under some, but not all

conditions, and that genes may participate in more than one functional process

and hence belong to multiple groups. Bi-clustering [9,16] is intended to overcome

the limitations of standard clustering methods by identifying a group of genes that

exhibit similar expression patterns in a subset of conditions. Bi-clustering was first

applied to gene expression analysis a decade ago [3], subsequently leading to dozens

of other bi-clustering algorithms. Nevertheless, the general bi-clustering problem

is NP-hard [3]. Efforts were invested in designing bi-clustering algorithms, mostly

heuristics, for finding postulated types of bi-clusters.

There are several types of bi-clusters that have been sought previously, including

(a) the constant value model, (b) the constant row model, (c) the constant column

model, (d) the additive coherent model, where each row (or column) is obtained

by adding a constant to another row (or column, respectively), and (e) the multi-

plicative coherent model, where each row (or column) is obtained by multiplying

another row (or column, respectively) by a constant value. In this paper, we con-

tinue to exploit the most general type-(f) linear coherent model [7] (see Figure 1),

in which each row is obtained by multiplying another row by a constant value and

then adding a constant. We further assume that bi-clusters are arbitrarily posi-

tioned and may overlap each other [15]. The most biologically meaningful types of

bi-clusters to be sought should map to the ultimate purpose of identifying groups of

genes that co-participate in certain genetic regulatory process. For example, house-

keeping genes are those that constitutively express in most conditions, and they

could be identified in the first two bi-cluster models (a) and (b). Most of the ex-

isting bi-clustering algorithms seek either type-(d) additive bi-clusters or type-(e)

multiplicative bi-clusters [7]. Mathematically, the type-(f) linear coherent model is

strictly more general than all the other five models. To illustrate the type-(f) lin-

ear coherent bi-cluster, suppose we have two genes g1 and g2 with 4 observations

of their gene expression value under 4 different conditions (samples): x, y, z, and

w. The linear coherence between g1 ([xg1 , yg1 , zg1 , wg1 ]) and g2 ([xg2 , yg2 , zg2 , wg2 ])

exists if g1 = a×g2+b+ ϵg1g2 , which leads to xg1 = a×xg2 +b+ ϵg1g2 , and likewise,

yg1 = a× yg2 + b+ ϵg1g2 , zg1 = a× zg2 + b+ ϵg1g2 , wg1 = a× wg2 + b+ ϵg1g2 . Here

ϵg1g2 is the certain random noise value existing in the linear coherence of g1 and g2.
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The scatter plot of the points with coordinates (xg1 , xg2), (yg1 , yg2), (zg1 , zg2), and

(wg1 , wg2) on a 2D plot of g1 and g2 would demonstrate a shape of beam close to

the line with slop a and intercept b.
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Fig. 1. The six different bi-cluster types.
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(a) Negative correlation.
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(b) Positive correlation.

Fig. 2. (a) illustrates two yeast genes YIL078W and YLL039C that have negative expression
correlation under a subset of conditions; the red conditions provide a stronger evidence than the
blue conditions, whereas the green conditions do not suggest any correlation. Similarly in (b),

genes YIL078W and YIL052C show a positive expression correlation.

The key idea in our new algorithm, LinCoh, for finding type-(f) linear coherent

bi-clusters is illustrated in Figure 2. Essentially, a pair of genes participates in a

linear coherent bi-cluster must be evidenced by a non-trivial subset of samples in

which these two genes are co-up-regulated (or co-down-regulated). Therefore, the

scatter plot of their pairwise expression levels, see Figure 2, where every point

(x, y) represents a sample in which the two genes have expression levels x and y

respectively, must show a diagonal band with a sufficient number of sample points.

The LinCoh algorithm starts with composing this non-trivial supporting sample

set for each gene pair, then to cluster these so-called outer sample sets. Each outer

sample set cluster, together with the associated genes and inner samples, is filtered
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to produce a final bi-cluster.

We compare our LinCoh algorithm to our previous LCBD algorithm and other

four most popular bi-clustering algorithms: Cheng and Church’s algorithm named

after CC [3]; the order preserving sub-matrix algorithm denoted as OPSM [2]; the

iterative signature algorithm denoted as ISA [10]; and the maximum similarity bi-

clustering algorithm denoted as MSBE [14]. The first three algorithms have been

selected and implemented in a survey [17]. Cheng and Church defined a merit score

called mean squared residue to evaluate the quality of a bi-cluster, and CC is a

greedy algorithm for finding bi-clusters of score no less than a given threshold [3].

OPSM is a heuristic algorithm attempting to find within a gene expression matrix

the sub-matrices, i.e. bi-clusters, in each of which the genes have the same linear

ordering of expression levels [2]. Another bi-cluster quality evaluation scheme is

proposed in [10] using gene and condition signatures, and the ISA is proposed for

finding the corresponding good quality bi-clusters. In particular, a randomized ISA

is put in place when the prior information of the expression matrix is not available.

The last algorithm, MSBE, is the first polynomial time bi-clustering algorithm

that finds optimal solutions under certain constraints [14]. Our previous algorithm

LCBD (linear coherent bi-cluster discovery via line detection and majority sample

voting) is similar to the LinCoh algorithm except that it detects lines using Hough

Transform technology instead of beams of each gene pair in the first step and it uses

majority sample voting to collect common sample set rather than using clustering.

The rest of the paper is organized as follows: Section 2 presents the details of

our LinCoh algorithm. In Section 3, we first introduce the quality measurements for

bi-clustering results; then describe how synthetic datasets were generated, followed

by the bi-clustering results and discussion; lastly we present the two real datasets

on yeast and e.coli respectively, as well as the bi-clustering results and discussion.

We conclude the paper in Section 4 with some remarks on the advantages and

disadvantages of our LinCoh algorithm.

2. The LinCoh algorithm

Let E(G,S) be an n ×m gene expression data matrix, where G = {1, 2, . . . , n} is

the set of gene indices and S = {1, 2, . . . ,m} is the set of sample (condition) indices.

Its element eij is the expression level of gene i in sample j. Our LinCoh algorithm

consists of two major steps, described in the next two subsections.

2.1. Step one: establishing pairwise gene relations

For each pair of genes p, q ∈ {1, 2, . . . , n}, we plot their expression levels in all

samples in a 2D plane, as shown in Figure 2, where a point (x, y) represents a

sample in which gene p has expression level x and gene q has expression level y.

The goal of this step is to detect a correlation between every pair of genes on a

subset of samples, if any. Such a subset of samples must evidence the correlation,

in the way that the two genes are co-up-regulated (or co-down-regulated) in these
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samples [13]. We define a beam Bθ,β,γ in the 2D plane to be the set of points on

the plane that are within distance 1
2β to a straight line that depends on θ and γ.

Here θ is the beam angle, β is the beam width, and γ is the beam offset. They are

all search parameters, but we are able to pre-determine some best values or ranges

of values for them.

Let µp and σp (µq and σq) denote the mean expression level of gene p (q, re-

spectively) across all samples and the standard deviation. To identify the subset of

supporting samples for this gene pair, Sθ,β,γ = S∩Bθ,β,γ , we seek for a beam Bθ,β,γ

in the 2D plane that aligns approximately the main diagonal (or the antidiagonal)

of the rectangle defined by {(µp − σp, µq − σq), (µp + σp, µq − σq), (µp + σp, µq +

σq), (µp − σp, µq + σq)}. Such an approximate alignment optimizes the following

objective function, which robustly leads to good quality bi-clusters:

max
θ,β,γ

WSθ,β,γ
·DSθ,β,γ

subject to:
∣∣corr(E(p, Sθ,β,γ), E(q, Sθ,β,γ)

)∣∣ ≥ tcc.

In the above maximization problem, DSθ,β,γ
is the vector of the Euclidean distances

of the samples inside the beam, i.e. Sθ,β,γ , to the line passing through (µp, µq) and

perpendicular to (called themidsplit line of) the beam center line;WSθ,β,γ
is a weight

vector over the samples in Sθ,β,γ , and we use Shepard’s function wj = drj/
∑

drj with

parameter r ≥ 0 to weight sample j ∈ Sθ,β,γ (to weight more on distant samples

but less on samples nearby the midsplit line); In the constraint, |corr(·, ·)| is the

absolute correlation coefficient between the two genes p and q, calculated over only

the samples in Sθ,β,γ ; tcc is a pre-determined correlation threshold.

The output of the maximization problem is Sθ,β,γ , which is either empty, indicat-

ing that no meaningful relationship between the two genes was found, or otherwise

a subset of samples that evidence a meaningful correlation between genes p and q.

According to our extensive preliminary experiments, the bi-clustering results are of

high quality when the correlation threshold tcc is larger than 0.75; and it is set to

0.90 and 0.75, respectively, on synthetic datasets and real datasets.

We implement a heuristic process to search for the beam, whose center line is

initialized to be the line passing through the main diagonal (for positive correlation)

or the antidiagonal (for negative correlation) of the rectangle in the expression

plot. The beam width β is fixed at a certain portion of 4σpσq/
√
σp

2 + σq
2; again

supported by the preliminary experiments, a constant portion in between 0.8 and

1.0 is sufficient to capture most meaningful correlations; and we fix it at 0.8 for

both synthetic datasets and real datasets. That is, β = 0.8×4σpσq/
√

σp
2 + σq

2. To

determine the beam angle θ in the positive correlation case, we define the search axis

to be the midsplit line of the main diagonal; a small interval is placed on the search

axis centering at (µp, µq), which is for a pivot point to float within; around each

position of the pivot point, whose distance to the center point (µp, µq) is denoted

as γ, different angles (the θ) are searched over to find a beam center line; each

resultant beam is tested for the constraint satisfaction in the maximization problem,
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and discarded otherwise; among all those beams that satisfy the constraint, the one

maximizing the objective function is returned as the target beam.

For evaluating the objective function, we have tested multiple values of r and

found that 0 gives the most robust bi-clustering results. Therefore, r is set to 0

as default. For each sample j inside the beam, its distance dj to the mid-split line

of the beam center line is rounded to 0 or 1 using a threshold of
√
σp

2 + σq
2.

When the target beam is identified, though might not be the true optimum to the

objective function, the sample set Sθ,β,γ is further partitioned into outer sample

set (containing the samples with distance dj rounded to 1) and inner sample set

(containing the rest). Gene pairs, together with non-empty outer and inner sample

sets, are sent to Step two for clustering.

2.2. Step two: sample set clustering

Step one generates an outer sample set and an inner sample set for each gene pair.

In this step, two n×n matrices are constructed: in the outer matrix Mo, the element

mo
pq is the outer sample set for gene pair p and q; likewise, in the inner matrix M i,

the element mi
pq is the inner sample set for gene pair p and q. We next process these

two matrices to robustly find bi-clusters.

First we want to filter out small outer sample sets that indicate insignificant

correlations for gene pairs. To this purpose, we select roughly the largest 0.15% outer

sample sets among all for clustering, which are of 99.7% confidence. This confidence

level is set after testing on a randomly generated datasets, with 68%, 95%, 99.7%

confidence levels according to the 68-95-99.7 rule. Observing that two disjoint gene

pairs could have the same outer sample sets but very different expression patterns,

simply using outer sample sets to construct bi-clusters might lead to meaningless

bi-clusters. In our LinCoh algorithm, genes are used as bridges to group similar

outer sample sets to form bi-clusters, since linear correlation is transitive. We first

define the similarity between two outer sample setsmo
pq andmo

rs as sim(mo
pq,m

o
rs) =

|mo
pq ∩mo

rs|/|mo
pq ∪mo

rs|, which is a most popular measure in the literature. Next,

we rank genes in the descending order of the number of associated non-empty outer

sample sets. Iteratively, the gene at the head of this list is used as the seed gene,

to collect all its associated (non-empty) outer sample sets. These outer sample sets

are partitioned into clusters using a density based clustering algorithm similar to

DBSCAN [5], and the densest cluster is returned, which is defined as a cluster whose

central point has the most close neighbors (see the pseudocode in the Appendix).

An initial bi-cluster is formed on the union S1 of the outer sample sets in the densest

cluster, and the set G1 of the involved genes.

The quality of the bi-cluster (G1, S1) is evaluated by its average absolute corre-

lation coefficient,

aacc(G1, S1) =

∑
p,q∈G1

|corr(E(p, S1), E(q, S1))|
(|G1|2 − |G1|)

. (2.1)

The initial bi-cluster (G1, S1) is refined in three steps to locally improve its quality.
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In the first step, all samples in S1 are sorted in decreasing frequency of occurrence

in all the outer sample sets of the seed gene; the lowest ranked sample is removed

if this removal improves the quality of the bi-cluster, or otherwise the first step is

done. Secondly, every gene in G1 is checked to see whether its removal improves

the quality of the bi-cluster, and if so it is removed from G1. At the end, if the

minimum gene pairwise absolute correlation coefficient of the bi-cluster is smaller

than a threshold, the bi-cluster is considered as of low quality and discarded. By

examining values from 0.50 to 0.99, our preliminary experiments showed that a

high threshold in between 0.7 and 0.9 is able to ensure good quality bi-clusters, and

it is set to 0.8 in all our final experiments. In the last step of bi-cluster (G1, S1)

refinement, the inner sample sets of the gene pairs from G1 are collected; their

samples are sorted in decreasing frequencies in these inner sample sets; using this

order, samples are added to S1 as long as their addition passes the 0.8 minimum

pairwise absolute correlation coefficient. A final bi-cluster (G1, S1) is thus produced.

Subsequently, all genes from G1 are removed from the gene list, and the next

gene is used as the seed gene for finding the next bi-cluster. The process iterates till

the gene list becomes empty. We remark that a gene can participate in multiple bi-

clusters, but it serves as a seed gene at most once. At the end, when two bi-clusters

overlap more than 60% area, the one of smaller size is treated as redundant and

discarded [13]. A pseudocode of our LinCoh algorithm 1 is provided in the Appendix

for the interested readers.

3. Results and discussion

We examine the LinCoh algorithm, and make comparisons with five other existing

bi-clustering algorithms, LCBD, CC, OPSM, ISA, and MSBE (their parameter

settings follow the previous works [17,14]), on many synthetic datasets and two

real gene expression microarray datasets on Saccharomyces cerevisiae (yeast) and

Escherichia coli (e.coli) respectively. Essentially, synthetic datasets are used for

evaluating absolute performance, since we know the ground truth; while the real

datasets are mainly used for evaluating relative performance. Consequently we have

different sets of performance measurements on synthetic and real datasets.

On synthetic datasets, bi-clustering algorithms are evaluated on their ability

to recover the implanted (true) bi-clusters. Prelić’s gene match score and over-

all match score [17] are adopted. Let C and C∗ denote the set of output bi-

clusters from an algorithm and the set of true bi-clusters for a dataset. The gene

match score of C with respect to the target C∗ is defined as scoreG(C, C∗) =
1
|C|

∑
(G1,S1)∈C max(G∗

1 ,S
∗
1 )∈C∗

|G1∩G∗
1 |

|G1∪G∗
1 |
, which is essentially the average of the max-

imum gene match scores of bi-clusters in C with respect to the target bi-clusters.

Similarly, the sample match score scoreS(C, C∗) can be defined by replacing gene

sets with the corresponding sample sets in the above. The overall match score is

then defined as their geometric mean, i.e.

score(C, C∗) =
√
scoreG(C, C∗)× scoreS(C, C∗).
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On real datasets, the bi-clusters discovered by an algorithm are mapped to

known biological pathways, defined in the GO functional classification scheme [1],

the KEGG pathways [11], the MIPS yeast functional categories [18] (for yeast

dataset), and the EcoCyc database [12] (for e.coli dataset), to obtain their gene

functional enrichment score as implemented in [13]. The average absolute corre-

lation coefficients (aacc’s) of the discovered bi-clusters are also used to compare

different algorithms.

3.1. Synthetic datasets

3.1.1. Noise resistance test:

This experiment examines how well a bi-clustering algorithm can recover implanted

bi-clusters. We follow Prelić’s testing strategy to first generate a 100×50 background

matrix (i.e., 100 genes and 50 samples), using a standard normal distribution for

the matrix elements; we then embed ten 10 × 5 non-overlapping linear coherent

bi-clusters along the diagonal; later for each vector of the five expression values, the

first two of them are set to down-regulated, the last two are set to up-regulated, and

the middle one is non-regulated; lastly, we add noise to the embedded bi-clusters

at six different noise levels (ℓ = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) by perturbing the

entry values so that the resultant values are ℓ away from the original values. The

generation is repeated ten times to give ten matrices.

The same simulation process is done to generate synthetic datasets containing

additive bi-clusters, when we compare the bi-clustering algorithms on their perfor-

mance to recover additive bi-clusters only (which is a special case of linear coherent

bi-clusters).

Figure 3 shows the gene match scores of all five bi-clustering algorithms at six

different noise levels, on their performance of recovering linear coherent bi-clusters

and additive bi-clusters, respectively. Their overall match scores and gene discovery

rates (defined as the percentage of genes in the output bi-clusters over all the genes

in the true bi-clusters) can be found in Figures 8 and 9 in the Appendix. In terms

of match scores, Figures 3 and 8 clearly show that our LinCoh outperformed all the

other five algorithms, ISA ranked the second, and the other three performed quite

poorly. In terms of gene discovery rate, again LinCoh outperformed all the other

five algorithms. LCBD performs well on low noise level but quickly drops when

noise level increases. We remark that gene discovery rate can be trivially lifted up

by simply output more bi-clusters. It is not a main measure used in this work, but

a useful measure in conjunction with match scores.

3.1.2. Overlapping test:

Individual genes can participate in multiple biological processes, yielding bi-clusters

that overlap with common genes in an expression matrix. Bi-clusters might also

overlap with a subset of samples. This experiment is designed to examine the ability
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Fig. 3. The gene match scores of the five algorithms on recovering linear coherent bi-clusters and

additive bi-clusters at six different noise levels.
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Fig. 4. The gene match scores of the five algorithms for recovering the overlapping linear coherent
and additive bi-clusters, under the union overlap model.

of different bi-clustering algorithms to recover overlapping bi-clusters. As before, we

consider type-(f) linear coherent bi-clusters and type-(d) additive bi-clusters, at a

fixed noise level of ℓ = 0.1.

Again, ten 100×50 background matrices are generated using a standard normal

distribution for the matrix elements; into each of them, two 10× 10 bi-clusters are

embedded, overlapping with each other by one of the following six cases: 0×0, 1×1,

2× 2, 3× 3, 4× 4, and 5× 5. Previous simulation studies suggested to replace the

matrix elements in the overlapped area with a random value; we expect, however,

these overlapping genes to obey a reasonable logic such as the AND gate and the OR

gate leading to a union and an additive behavior. Therefore, in the union overlap

model, the matrix entries in the overlapped area preserve linear coherency in both

bi-clusters (consequently, the overlapped area extends its linear coherency into both

bi-clusters on those samples in the overlapped area); and in the additive overlap

model, these entries take the sum of the gene expression levels from both bi-clusters.

Figure 4 shows the gene match scores of the five bi-clustering algorithms in this
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experiment. Their overall match scores and gene discovery rates under the union

overlap model are plotted in Figures 10 and 11 in the Appendix. The results of

the additive overlap model are in Figures 12, 13, and 14 in the Appendix. From all

these results, one can see that our LinCoh outperformed the other five algorithms;

OPSM and MSBE performed worse, but similarly to each other; CC performed

the worst; and ISA demonstrated varying performance. LCBD again shows better

performance on low noise level and worse performance on high noise level. Note that

he overall performance of LCBD on the overlapping test is better than on the noise

test because the bi-clusters in the overlapping test has bigger sample size which

makes the hough transform easier to capture the lines.

3.2. Real datasets

The yeast dataset is obtained from [8], containing 2993 genes on 173 samples; the

e.coli dataset (version 4 built 3) is from [6], which contains initially 4217 genes on

264 samples. Genes with small expression deviations were removed from the second

dataset, giving rise to 3016 genes. Such a process ensures that all five bi-clustering

algorithms can run on the dataset. In particular, it took two weeks for LinCoh to run

on each dataset using a 2.2GHz CPU node of 2.5GB memory. The performance of

an algorithm on these two real datasets is measured in gene functional enrichment

score [13]. First, the P -value of each output bi-cluster is defined using its most

enriched functional class (biological process).

The probability of having r genes of the same functional class in a bi-cluster of

size n from a genome with a total of N genes can be computed using the hypergeo-

metric function, where p is the percentage of that functional class of genes over all

functional classes of genes encoded in the whole genome. Numerically [13],

Pr(r|N, p, n) = ( pNr ) · ( (1−p)N
n−r )/(Nn ).

Such a probability is taken as the P -value of the output bi-cluster enriched with

genes from that functional class [13]. The smallest P -value over all functional classes

is defined as the P -value of the output bi-cluster — the smaller the P -value of a

bi-cluster the more likely its genes come from the same biological process. For each

algorithm, we calculate the fraction of its output bi-clusters whose P -values are

smaller than a significance cutoff α.

Figure 5 compares the five algorithms using six different P -value cutoffs, eval-

uated on the GO database. Results on the KEGG, MIPS, and Regulon databases

are in Figures 15 and 16 in the Appendix. All these results show that our LinCoh

consistently performed well; OPSM and ISA did not perform consistently on the

two datasets across databases; and that MSBE and CC did not perform as well as

the other three algorithms. The LCBD algorithm consistently performs worse than

LinCoh under these two datasets and these experimental settings. This is mainly

because the linear coherent relation it considers is not always close to the main

diagonal its less robust to noise.
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Fig. 5. Portions of discovered bi-clusters by the five algorithms on the two real datasets that are
significantly enriched the GO biological process, using six different P -value cutoffs.

One potential issue with the P -value based performance measurement is that

P -values are sensitive to the bi-cluster size [13]; in general, larger bi-clusters tend

to produce more significant P -values. Table 1 in the Appendix summarizes the

statistics of the bi-clusters produced by the five algorithms. The last column in

the table records the numbers of unique functional terms enriched by the produced

bi-clusters. On yeast dataset, when measured by the gene enrichment significance

test, OPSM performed very well (Figure 5, left); yet its bi-clusters only cover one

functional term on the GO and KEGG databases and two terms on MIPS database.

Such a phenomenon suggests that its bi-clustering result is biased to a group of

correlated genes, missed by the P -value based significance test. Furthermore, we

generated all the gene pairs with absolute correlation coefficient greater than or

equal to 0.8 over all the samples for both the yeast and e.coli datasets. Table 2 in

the Appendix shows the numbers of common GO terms and their counts. Among

these strongly correlated gene pairs, many do not even have one common GO term.

Table 3 in the Appendix shows the top 10 counted common GO terms (full table

can be found at ‘http://www.cs.ualberta.ca/~ys3/LinCoh’).

The above two potential issues hint that the P -value based evaluation is mean-

ingful but has limitations. We propose to use the average absolute correlation co-

efficient over all gene pairs in a bi-cluster defined in Eq. (2.1) as an alternative

assessment of the quality of a linear coherent bi-cluster. Figure 6 shows the box

plot of these correlation values for the bi-clusters produced by the five algorithms

on the two real datasets. From the figure, one can see that our LinCoh and OPSM

significantly outperformed the other three algorithms. Additionally, the minimum

absolute correlation coefficient over all gene pairs in a bi-cluster can also be adopted

as a quality measurement. Figure 17 in the Appendix shows these results.

Figure 6 shows that OPSM produced bi-clusters with very high linear coherence.

But the numbers of samples in its bi-clusters are much smaller than those in Lin-

Coh’s bi-clusters, as shown in Table 1 in the Appendix (tens versus hundreds). This
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Fig. 6. Box plots of the average absolute correlation coefficients obtained by the five bi-clustering
algorithms on yeast and e.coli datasets, respectively.

suggests that very closely interacting gene pairs can have small empirical correlation

coefficients on a subset of samples, largely due to noise and measurement errors. In

fact, there is always a trade-off between bi-cluster coherence and its size. Thus, to

compare algorithms in a less sample-size biased way, we replaced for each bi-cluster

its average absolute correlation coefficient by the 99% confidence threshold using

the number of samples in the bi-cluster [19], and box plotted these values in Fig-

ure 18 in the Appendix. They show much more comparable performance between

LinCoh and OPSM.

4. Conclusions

In this paper, we proposed a new bi-clustering algorithm, LinCoh, for finding linear

coherent bi-clusters in a gene expression matrix. The algorithm has two impor-

tant steps, beam detection for pairwise gene correlations and density based outer

sample set clustering. Our experiments on synthetic and real datasets demonstrate

that LinCoh consistently performed well. Using real datasets, we also showed some

limitations of the widely adopted functional enrichment measurement, and pro-

posed to use average absolute correlation coefficient as an alternative measure for

bi-clustering quality. With its outperformance over the compared five popular al-

gorithms, LinCoh can serve as another useful tool for microarray data analysis,

including bi-clustering and genetic regulatory network inference.

One disadvantage of LinCoh is its large memory and extensive computing time

requirement, due to constructing the outer and inner sample set matrices. It takes

O(n2mp) to compute the sample set matrices where n is the number of genes and

mp is the number of parameters θ, β and γ. The memory required for storing the

matrices is O(n2ms) where n is the number of genes and ms is the average size

of the sample set elements. It takes weeks and up to 1 Gigabyte memory to run

experiments on the e.coli dataset. Improvements in beam detection and sample set
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clustering can also achieve significant speed-ups.
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Appendix

(a) Unobvious Bi-cluster. (b) Obvious Bi-cluster.

Fig. 7. An example of a constant row bi-cluster in the gene expression matrix. (a) shows a gene
expression matrix without any obvious bi-clusters; (b) shows after swapping rows and columns, a
constant row bi-cluster becomes salient.
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Fig. 8. The overall match scores of the five algorithms for recovering linear coherent and additive

bi-clusters, at six different noise levels.
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Algorithm 1 The LinCoh Algorithm

Input An n×m real value matrix A(I, J), Tclose, TminCC

Output A set of bi-clusters A(gi, si), where gi ⊆ I and si ⊆ J .

for i = 1 to n do

for j = i + 1 to n do

MO(i, j) = NULL, MI(i, j) = NULL;

θrec = NULL, βrec = NULL, γrec = NULL;

for A set of beam parameters (θ, β, γ) do

if WSouter(θ,β,γ)
·DT

Souter(θ,β,γ)
> |MO(i, j)| then

MO(i, j) = Souter(θ,β,γ);

θrec = θ, βrec = β, γrec = γ;

end if

end for

MI(i, j) = Sinner(θrec,βrec,γrec);

end for

end for

for i = 1 to n do

for j = i + 1 to n do

if MO(i, j) < µss + α · σss then

MO(i, j) = NULL, MI(i, j) = NULL;

end if

end for

end for

for i = 1 to n do

SSi =
∪

j∈J(MO(i, j));

end for

GeneListss = DescendSort(Genes) based on |SSi| ̸= NULL of each i ∈ I;

BiclusterPool = NULL;

while GeneListss ̸= EMPTY do

SeedGene = Pop(GeneListss);

Construct similarity matrix Matrixss for SSseedGene elements based on

MS(SSi, SSj) =
|SSi∩SSj |
|SSi∪SSj | ;

Find the centroid sample set SScentroid that has the most close (MS(Si, Sj) ≥
Tclose) neighbors, SSneighbors;

GenePool =
∪
(Gi ∈ GSScentroid

∪
GSSneighbors

);

SamplePool =
∪
(Sj ∈ SScentroid

∪
SSneighbors);

BiClusterinitial = A(GenePool, SamplePool);

BiClusterrefined = RefineBicluster(BiClusterinitial)

if MinAbsCC(BiClusterrefined) ≥ TminCC then

BiclusterPool.add(BiClusterrefined);

end if

end while

Biclustersfinal = RedundantRemoval(BiclusterPool)
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Fig. 9. The gene discovery rates of the five algorithms for recovering linear coherent and additive
bi-clusters, at six different noise levels.

#Unique terms enriched

#Bi-clusters µ|gene| σ|gene| µ|sample| σ|sample| (GO, KEGG, MIPS/regulons)

(Yeast)

LinCoh 100 61.84 38.43 133.09 18.09 5, 7, 5

LCBD 132 46.46 17.53 13.35 4.28 10, 6, 11

ISA 47 67 34.54 8.4 1.78 15, 13, 18

OPSM 14 423.29 728.95 9.07 5.14 1, 1, 2

MSBE 40 19.25 8.32 18.68 8.22 8, 4, 6

CC 10 297.7 304.18 60.8 23.46 6, 4, 8

(E.coli)

LinCoh 100 9.63 7.66 141.43 34.04 24, 24, 22

LCBD 155 485.05 336.63 15.37 22.95 23, 22, 33

ISA 34 124.21 42.18 13.88 6.11 11, 10, 13

OPSM 14 419.29 744.35 8.93 4.8 8, 4, 5

MSBE 9 82.67 18.1 80.22 19.18 1, 3, 4

CC 10 309.9 950.15 31.4 81.74 2, 2, 2

Table 1. Statistics of different algorithms’ bi-clustering results and the numbers of functional terms
enriched on different databases.
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Term count yeast e.coli

0 909 2680

1 18860 3485

2 7898 1533

3 1839 490

4 165 239

5 30 52

6 6 18

7 4 0

Overall 28802 5817

Table 2. For all the gene pairs with absolute correlation coefficient ≥ 0.8, the number of pairs that
have between 0 and 7 common GO terms.

yeast e.coli

GO term Count GO term Count

GO:0006412 8353 GO:0006412 811

GO:0000723 1920 GO:0008652 680

GO:0000027 1615 GO:0001539 388

GO:0000028 1070 GO:0006810 317

GO:0006365 969 GO:0006355 234

GO:0006413 893 GO:0006811 195

GO:0030488 782 GO:0006865 183

GO:0006364 720 GO:0006260 127

GO:0030490 683 GO:0046677 115

GO:0006360 424 GO:0008152 111

Table 3. The top 10 gene pairs’ common GO terms and their counts.
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Fig. 10. The overall match scores of the five algorithms for recovering linear coherent and additive

bi-clusters, under six different amounts of overlap using the union overlap model.
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Fig. 11. The gene discovery rates of the five algorithms for recovering linear coherent and additive
bi-clusters, under six different amounts of overlap using the union overlap model.
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Fig. 12. The gene match scores of the five algorithms for recovering linear coherent and additive
bi-clusters, under six different amounts of overlap using the additive overlap model.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0by0 1by1 2by2 3by3 4by4 5by5

W
ho

le
-w

is
e 

M
at

ch
 S

co
re

Adding Overlapping Level on Linear Coherent Bi-clusters

LinCoh
LCBD
MSBE
OPSM

ISA
CC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0by0 1by1 2by2 3by3 4by4 5by5

W
ho

le
-w

is
e 

M
at

ch
 S

co
re

Adding Overlapping Level on Additive Bi-clusters

LinCoh
LCBD
MSBE
OPSM

CC
ISA

Fig. 13. The overall match scores of the five algorithms for recovering linear coherent and additive

bi-clusters, under six different amounts of overlap using the additive overlap model.
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Fig. 14. The gene discovery rates of the five algorithms for recovering linear coherent and additive
bi-clusters, under six different amounts of overlap using the additive overlap model.
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Fig. 15. Portions of yeast bi-clusters that are significantly enriched over different P -values in the
MIPS pathway and KEGG pathway.
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Functional Enrichment Test of E.COli Dataset based on KEGG database
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Functional Enrichment Test of E.COli Dataset based on REGULON database
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Fig. 16. Portions of e.coli bi-clusters that are significantly enriched over different P -values in the
KEGG pathway and experimentally verified regulons.
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Fig. 17. The box plots of minimum absolute correlation coefficients of the bi-clusters produced by

the five algorithms on the yeast and e.coli datasets.
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Fig. 18. The box plots of the 99% confidence thresholds of the average absolute correlation co-
efficients of the bi-clusters, using the number of samples in each bi-cluster, produced by the five
algorithms on the yeast and e.coli datasets.


