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Abstract

DNA microarray is a high throughput gene profiling technology that has been employed in numer-

ous biological and medical studies. These studies require complete and accurate gene expression

values which are not always available in practice due to the so-called microarray missing value

problem. In this dissertation, most of the existing microarray missing value imputation methods are

reviewed and discussed. In these missing value imputation methods, the (normalized) root mean

squared error is commonly adopted as a standard measurement of the imputation quality. However,

considering that the imputed expression values are for downstream data analyses, we propose to use

the microarray sample classification accuracy in addition to (normalized) root mean squared error,

to measure the missing value imputation quality. Our extensive comparative study between seven

missing value imputation methods circulate our conjecture that the sample classification accuracy is

a more appropriate way for measuring the microarray missing value imputation quality.
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Chapter 1

Introduction

1.1 Microarray Technology

DNA microarrays, also known as gene chips, DNA chips, or gene arrays, are a collection of micro-

scopic DNA spots (probes) attached to a solid surface (e.g. glass, plastic or silicon chip). They are

used for the purpose of gene expression profiling, to monitor the expression levels of thousands of

genes simultaneously. Expression profiling is a microarray technology that detects the RNAs that

may or may not be translated into active proteins. Currently, two types of microarrays are widely

used in biological and medical experiments. One is the two-channel microarray, such as cDNA mi-

croarray, and the other is single-channel microarray, such as GE Healthcare, Affymetrix, or Agilent.

The two-channel microarray is typically hybridized with cDNAs from two samples to be compared

(e.g. disease and normal) that are labeled with two different fluorescent dyes (usually red and green).

The samples can be mixed and hybridized to a microarray and the up-regulated and down-regulated

genes are then scanned, visualized and quantified. In single-channel microarrays, the probes are de-

signed to match parts of the mRNA sequences, and estimate the absolute gene expression values and

therefore two separate microarrays are required to make the comparison of two different conditions.

Exploring the genes which are differentially expressed under different biological conditions by

profiling their expression values is an important application of microarray experiments. Figure1.1

illustrates how such an experiment is performed using a two-channel cDNA microarray. In general,

there are six steps for such a microarray gene profiling experiment. (1) Cells are extracted from dif-

ferent samples (for example, disease sample and normal sample) and cultivated in different tubes for

a period of time so that adequate amount of different kinds of cells could be collected. (2) Messen-

ger RNAs (mRNA) are isolated in different conditions and extracted from them. (3) mRNAs from

different conditions are reverse transcribed into their corresponding cDNAs of different fluorescent

dyes (cDNAs are artificially synthesized DNAs from mRNA templates). (4) Different cDNAs are

mixed up together and a proportion of them are hybridized to a single microarray chip. (5) The

hybridized microarray chip is scanned by scanners of different color channels (red and green) and

their fluorescence intensities are collected and quantified by specific sensor and software. (6) The
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Figure 1.1:Microarray experiment procedure (figure fromwikipedia.org ).

logarithmic ratios of the intensities from different channels are computed and considered to be the

gene expression levels.

1.2 Microarray Missing Value Problem

The DNA microarray technology provides an innovative tool for approaching the system-level un-

derstanding of biological systems, and has become indispensable in numerous studies covering a

broad range of biological and medical disciplines. Most DNA microarray data analysis methods

such as hierarchical gene clustering, biomarker identification, sample class prediction, and genetic

and regulatory network prediction require the expression values to be complete and as accurately as

possible. This requirement in practical experiments, however, is not always satisfied due to various

experimental factors which originate from the imperfections at the level of chip production and treat-

ment, and hybridization and scanning. Most of these imperfections occur at random. These include

hybridization failures, artifacts on the microarray, insufficient resolution, dust on the slide, image

noise, image corruption, or scratches on the slide. In addition to such expression values missing

at random, systematic data missing might also occur. Note that during signal scanning, sensor and

software are used to collect and compute the gene expression values, and software could flag signals

which cannot be distinguished from the background or have a too irregular form because the signal

itself is too low. In these cases, missingness depends on the signal intensity and therefore missing

values are not at random [21].

Typically, 1-10% of the data on microarray can be missing, affecting up to 95% of the genes [21].

Even with the high-density oligonucleotide arrays such as Affymetrix GeneChip oligonucleotide ar-

rays, as high as 20% percentage of expression spots on the arrays can be blemished and thus become
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missing values. The missing value problem can affect the subsequent microarray data analyses to a

serious extent. Although repetition of identical experiments [24] has been proposed and adopted to

validate the microarray data analysis methods dealing with the missing value problem [25], to do so

is not only costly and time consuming, but also cannot come to identical gene expression profiling

results. Therefore, there is a strong motivation to design reliable and robust missing value imputa-

tion algorithms to estimate the missing values as accurate as possible. In the past several years, more

than a dozen microarray missing value imputation methods have been proposed. As far as we know,

the following missing value imputation methods are either commonly used or most representative or

most recently proposed. They are (the nomenclature of the imputation methods in this paper is the

acronym of the method +impute): Zero Imputation (ZEROimpute) [2, 26], Row Average Imputation

(ROWimpute) [2, 26], Column Average Imputation (COLimpute) [2, 26], K-Nearest Neighbors Im-

putation (KNNimpute) [24], Singular Value Decomposition Imputation (SVDimpute) [24], Bayesian

Principal Component Analysis Imputation (BPCAimpute) [19], SequentialK-Nearest Neighbors

Imputation (SKNNimpute) [15], Gaussian Mixture Clustering Imputation (GMCimpute) [20], Least

Squares Imputation (LSimpute) [5], Local Least Squares Imputation (LLSimpute) [14], Collateral

Missing Value Imputation (CMVEimpute) [22], LinImp [21], Support Vector Regression Imputa-

tion (SVRimpute) [25], Iterated Local Least Squares Imputation (ILLSimpute) [7], Projection onto

Convex Sets Imputation (POCSimpute) [11], and some combinations of them such as LinCmb [13].

In the Related Work chapter, these imputation methods will be reviewed in detail.

1.3 Motivation of Our Approach

Intuitively, the missing value imputation quality can be measured by how close the predicted values

and the original expression values (the readout expression values) are. The closer they are, the bet-

ter imputation quality the method achieves. Based on this principle, theRoot Mean Square Error

(RMSE) was proposed as a standard for measuring the imputation quality, and more recently, its

Normalizedversion,Normalized Root Mean Square Error(NRMSE) was more commonly adopted

[24, 19, 5, 15, 20, 13, 14, 21, 22, 25, 7, 11]. The NRMSE measurement presumes that all the ob-

served gene expression values, which are not considered as missing values, should accurately mea-

sure the hybridization intensities of the genes or probes on the microarray chips. This presumption,

however, is not necessarily the case. As we mentioned earlier, even on the high-density oligonu-

cleotide arrays such as Affymetrix GeneChip oligonucleotide arrays, a considerable percentage of

probes could have been blemished, so many should be treated as missing values. Moreover, the

boundary between the accepted expression values and the treated-as-missing values is often vague,

which means that among the accepted expression values, there still could be a considerable percent-

age of them that do not accurately measure the true gene hybridization intensities, although data

noises in them may not be significant enough for them to be treated as missing values.

Based on these observations, in addition to NRMSE, some other measurements have been pro-
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posed to measure the missing value imputation quality [20, 21]. These measurements are often inef-

fective or hard to apply to most public microarray datasets. Considering one of the most important

applications of gene expression microarray is for discriminating different experimental conditions,

for example, disease subtype recognition and disease treatment classification, we propose to adopt

one downstream microarray data analysis, microarray sample classification, to be a measurement

of the quality of missing value imputation, in addition to NRMSE. The main strength of this new

measurement is that it resolves the issues caused by using NRMSE as described above, because the

imputed expression values themselves are not interesting, while whether or not the imputed expres-

sion values can be trusted and used in downstream applications is the major concern.

The rest of this dissertation is organized as follows: In Chapter 2, the important microarray miss-

ing value imputation methods proposed in recent years are reviewed in detail, including ILLSimpute

developed within our group, followed by some well-known missing value imputation measurements.

The gene selection (biomarker identification) algorithms which are proposed for improving the sam-

ple classification accuracies are then introduced. In Chapter 3, the complete work flow of the new

missing value imputation measurement, from missing value imputation methods, to gene selection,

to classifier building, is introduced in detail. Chapter 4 presents the experimental results of the new

measurement and Chapter 5 discusses and concludes this dissertation with some proposed future

works of our study.
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Chapter 2

Related Work

2.1 Missing Value Imputation Methods

2.1.1 ZEROimpute, ROWimpute and COLimpute

Before data analysis, microarray data are usually arranged in the following format. The microarray

expression values of genes collected from different experiments form an expression matrix. In this

expression matrix, each column contains the expression values of a single microarray experiment

and each row contains the expression values of a single gene over all these experiments. In the two-

color microarray, since expression values are usually pre-normalized so that they distribute in range

[−R, R], for some integerR [2, 24], ZEROimpute fills the missing values with zero. Although it is

very simple and efficient, obviously, ZEROimpute could artificially create erroneous relationships

between genes since the integrity and usefulness of the non-missing data on the expression matrix are

not taken into account. As an improvement to ZEROimpute, mean imputation such as ROWimpute

fills a missing value with the mean expression value of its corresponding row (excluding those

spots that are missing values themselves). Similar to ROWimpute, COLimpute fills a missing value

with the mean expression value of its corresponding column (excluding those spots which contain

missing values). Both ROWimpute and COLimpute can be generalized for single-channel arrays

such as Affymatrix arrays. Having the similar drawback as ZEROimpute, mean imputation methods

do not make good use of information between genes, although the methods themselves are very

efficient and simple to apply.

2.1.2 KNNimpute, SVDimpute, and SKNNimpute

With the advance of microarray technology and its increasing applications, the missing value prob-

lem began to attract more attention and much more complex missing value imputation methods have

been proposed, differing from pivotal ideas. Troyanskayaet al. [24] proposed the Singular Value

Decomposition (SVDimpute) and the weightedK-Nearest Neighbors (KNNimpute) missing value

imputation methods. In SVDimpute, a set of mutually orthogonal expression patterns are obtained

and their linear combination is used to approximate the expression of all genes, through the singular
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value decomposition of the expression matrix. In more detail, after selecting theK most significant

eigengenes, a missing value in the target gene is estimated as the following: First, the target gene

is regressed against theseK eigengenes. Then, using the regression, the missing value is estimated

from a linear combination of theK eigengenes [24, 7]. In KNNimpute, for a target gene, itsK

nearest neighbor genes (rows) which do not contain missing values in the same column (sample)

positions as the target gene, are selected, according to their Euclidean distances to the target gene.

Then, the missing value in the target gene is estimated by a weighted linear combination of theK

nearest neighbor genes, where a weight is calculated as the inverse of the Euclidean distance be-

tween the target gene and the neighbor gene. In the literature, there exist several variants of the

KNNimpute algorithm. In some articles such as [16, 20], the neighbors are not allowed to have

any missing values. Our experimental results show that this can cause problems in a dataset where

a high percentage of missing values exist, because only a few, or even no gene, actually meet this

requirement of having no missing value other than the position that the target gene has. The impu-

tation could fail consequently. In some other articles such as [19], missing values in the neighbors

are allowed, but they are not filled with certain initial estimates such as row averages before being

used to estimate the missing values in the target gene. This will lead to false distances for neighbors

which have a lot of missing values. All these variants of KNNimpute are less effective than the full

version KNNimpute, which does not likely suffer from any of the weaknesses mentioned above. We

choose to use the full version of KNNimpute in our comparison experiment. As an extension to

the KNNimpute method, the SequentialK-Nearest Neighbors imputation (SKNNimpute) method

imputes missing values from genes with the least number of missing values to genes with the most

number of missing values sequentially. Within each iteration of SKNNimpute, KNNimpute is ap-

plied to estimate the missing values in the target gene but only the genes that have no missing value

or whose missing values have already been imputed can be used as neighbor genes. Note that the

KNNimpute process employed in the SKNNimpute is different from the full KNNimpute version,

which initially fills the missing values in neighbor genes with row averages before the regression

process, and this is because instead of doing so, SKNNimpute uses the imputed genes as candidate

genes when estimating missing values for a target gene.

2.1.3 LSimpute, LLSimpute, and ILLSimpute

Bø et al. [5] proposed a least square principle based imputation method named LSimpute, which is

similar to KNNimpute to some extent. Considering that not only genes but also samples in the

microarray expression matrix could be correlated, LSimpute proposes and combines the LSim-

putegene and LSimputesample methods which are gene-based LSimpute and sample-based LSim-

pute, respectively, to estimate the missing values. In LSimputegene, for a target gene, thek genes

that are the most correlated to it are selected according to the their absolute correlation values, and

when selecting the correlated genes, only the columns (samples) where both genes (the target gene
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and candidate gene) having non-missing values are included. Because multiple linear square re-

gression on gene correlations is not feasible for more than a few genes, after thek correlated genes

are selected, for each pair of the target gene and the candidate gene, the single regression for es-

timating the missing values in the target gene is computed based on the least square regression.

Then, by using a weighted combination of these single regression estimates, the weighted estimate

is computed, and the way to determine the weights is based on the absolute correlation values. The

higher the absolute correlation value between a candidate gene and the target gene, the greater the

weight assigned to their corresponding single regression estimate. Similar to LSimputegene, LSim-

putesample estimates the missing values in a target sample by using the most correlated samples.

Because there are usually fewer samples than genes in a microarray expression matrix, after thek

correlated samples are selected, a multiple regression estimate using thesek samples, which is also

based on least square principle, can to be applied to estimate the missing values. Then, the miss-

ing values are finally estimated by the weighted averages of the estimates from LSimputegene and

LSimputesample, where the weights are determined by choosing one which minimizes the sum of

squared errors between the artificially removed and later imputed missing values on the expression

matrix and their corresponding original true values. Proposed by Kimet al. [14], local least square

imputation, referred to as LLSimpute, is another missing value imputation method based on the least

square principle. For a target gene, LLSimpute first determines thek genes most correlated to it by

using theL2-norm or Pearson correlation coefficient. Then, a linear combination of thek coherent

genes is used to estimate a missing value in a target gene, and the linear combination is determined

based on least square principle. Most recently, within our group, Caiet al. [7] proposed iterated lo-

cal least square imputation, referred to as ILLSimpute, which extends LLSimpute by employing an

iterated procedure in LLSimpute and by learning the parameterk for selecting thek coherent genes.

Since tending to exploit the local correlation in dataset, LSimpute, LLSimpute, and ILLSimpute

usually have better performance on datasets where strong local relations between genes or samples

exist.

2.1.4 BPCAimpute

Instead of exploiting the local correlations in the microarray expression dataset for missing value es-

timation, Bayesian principle component analysis imputation, referred to as BPCAimpute, which was

proposed by Obaet al. [19], took into consideration the global correlation in the expression dataset.

Essentially, BPCAimpute employs three elementary processes, a principle component regression, a

Bayesian estimation, and an expectation-maximization-like repetitive algorithm. BPCAimpute im-

putes the missing values using a probabilistic model under the framework of Bayesian inference, by

estimating the latent parameters in the model. In BPCAimpute, missing values are estimated using

a Bayesian estimation algorithm, which is used for bothΘ, the model parameter, andY miss, the
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missing values. Finally, the missing valuesŶ in the expression matrix are estimated using:

Ŷ =
∫

Y missq(Y miss)dY miss,

q(Y miss) = p(Y miss|Y obs,Θtrue),

whereq(Y miss) is the posterior distribution forY miss andΘtrue is the posterior parameter of the

missing value.

2.1.5 LinImp

Scheelet al. [21] proposed LinImp, which acts to individual channel missing values separately. By

using a linear model, LinImp estimates a single channel missing valueyijkg, which is the base2

logarithm of the intensity in arrayi, channel (dye)j, varietyk and geneg as:

yijkg = µ + Ai + Dj + Gg + ADij + AGig + DGjg + V Gkg + εijkg,

whereεijkg are the independent errors normally distributed with mean0 and varianceσ2. The

varieties are the experimental conditions under study.µ is the overall mean expression value,Ai

is the effect factor caused by arrayi, Dj is the effect of dyej, Gg is the overall effect of geneg,

ADij is the interaction between arrayi and dyej, AGig is the interaction between arrayi and gene

g, DGig is the interaction between dyej and geneg, andV Gkg is the interaction between varietyk

and geneg [21]. The model can be re-written in matrix form:

y = Xβ + ε,

wherey is a vector of gene expression values,X is a matrix of zeros and ones, and

β = (µ,AT , DT , GT , ADT , AGT , DGT , V GT )T .

When imputing missing values, LinImp first imputes missing values using existing imputation meth-

ods, such as KNNimpute, to get the initial estimation vectorY 0. UsingY 0, based on the linear

model, the parameter vectorβ is estimated, denoted aŝβ0. Then, usinĝβ0, the new full data matrix

Y 1 is obtained. LinImp repeats this iteration procedure until‖Y M − Y M−1‖ < δ, whereM is

the number of iterations andδ is a fixed small value. Disregarding the effectiveness of LinImp im-

putation, because it requires individual channel information, which is not always available in many

public datasets, its applicability is limited. However, an extended version of LinImp which is applied

the to logarithm ratio of two channels could be more applicable.

2.1.6 GMCimpute

Ouyanget al. [20] proposed a Gaussian mixture clustering based missing value imputation algo-

rithm, referred to as GMCimpute. In GMCimpute, data are modeled by Gaussian mixtures and miss-

ing values are estimated by the Expectation-Maximization (EM) algorithm. Given an empirically
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determined valueS, for the expression matrixA with missing values, Gaussian mixture clustering

estimationsA1, A2, A3, . . . , AS with cluster numbersK = 1, 2, 3, . . . , S are computed and the fi-

nal missing value estimation is calculated as the average of them. GivenK andA, a K estimate

procedure is used to estimateAK by first extracting complete rows (or genes) fromA to construct a

matrixB which does not have missing values. Gaussian mixture clustering is then applied on matrix

B and the Gaussian mixture clustering parameters are computed accordingly. Then, given matrixA

and these computed parameters, the EM algorithm, denoted as EMestimate, is used to compute the

first version of the estimated expression matrixA′. After the first version of matrixA′ is available,

a new set of Gaussian mixture clustering parameters are generated based on it and the EMestimate

procedure is again applied onA′ using the new generated parameters to estimate the new version

of A′. These two steps of generating the new parameters and the EMestimate procedure are iter-

atively executed until the whole process converges. Disregarding the effectiveness, there are two

limitations in GMCimpute. First, when the missing ratio in the expression matrix is high enough,

which actually happens in practice, the size of complete gene matrixB could be very small or even

be zero, which would affect the subsequent procedure of GMCimpute or even make GMCimpute

inapplicable. Although other imputation methods could be used to initially fill the missing values,

biases could be introduced into the GMCimpute [20]. Second, in GMCimpute, the EMestimate and

K estimate are not guaranteed to converge [20], which would fail the whole imputation.

2.1.7 CMVEimpute

The collateral missing value imputation (CMVEimpute), proposed by Sehgalet al. [22], considers

both positive and negative relations between genes when estimating missing values. In CMVEim-

pute, three estimates (Φ1,Φ2, andΦ3) are generated and the final estimate is distilled from them.

When first selecting theK most correlated genes for the target gene, the covariance function, rather

than the Euclidean distance used in KNNimpute, is employed to measure the similarities between a

candidate gene and the target gene. Then a least square regression method is applied to estimateΦ1.

When estimatingΦ2 andΦ3, CMVEimpute uses the non-negative least square (NNLS) algorithm,

which is superior for estimating positive correlated values. The final missing value estimateχ is

formed using

χ = ρ · Φ1 + δ · Φ2 + λΦ3,

whereρ = δ = λ = 0.33 are used to avoid bias toward one particular estimate [22]. In practice,

however, since each of these three estimates could be highly data-dependent, adjusting the three

weight parameters could improve or repress the imputation quality.

2.1.8 SVRimpute

Wang et al. [25] proposed a support vector regression based missing value imputation, namely

SVRimpute. For a missing positionj in the target gene, all rows (or genes) in the expression matrix
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with non-missing values in thej-th position are used to form a training set, which is then mapped into

a higher dimensional space to construct a model for regression, and all rows with missing values in

thej-th position are used to compose a testing set [25]. By identifying support vectors in the higher

dimensional space, SVRimpute builds the regression and predicts the missing values for the testing

set. Note that the support vector regression can only predict one missing value in one row, while

in practice, multiple missing values could exist in a single row. To solve this problem, SVRimpute

uses a coding scheme to pre-process the data. For a row containing more than one missing value,

SVRimpute first fills in each missing value with zero or the row average or the column average

except the one which is to be predicted. Disregarding the innovative ideas used in SVRimpute,

according to the experiment results [25], SVRimpute does not consistently outperform other existing

missing value imputation methods such as BPCAimpute and LLSimpute. Moreover, the coding

scheme for multiple missing values problem in the pre-process is questionable since ZEROimpute,

ROWimpute, and COLimpute have been proven less effective than other missing value imputation

methods. A more convincing coding scheme may improve the performance of SVRimpute and an

iterative process which continually updates the missing values could be considered to be adopted in

SVRimpute.

2.1.9 POCSimpute

Most recently, Ganet al. [11] proposed a missing value imputation method using a set theoretic

framework based on projection onto convex sets (POCS) for the prior knowledge of the expres-

sion data. POCSimpute captures three pieces of information during the imputation: the gene-wise

correlation, the array-wise correlation, and the phenomenon of synchronization loss. First, when

capturing gene-wise correlation, similar to LSimpute, POCSimpute first selects theK most cor-

related genes in matrix for a target gene. Then it estimates the missing values in the target gene

using each of theseK genes based on the single regression model. By using a weight function, the

weighted average of these single regressions is computed and is considered as the gene-wise missing

estimates. Based on the estimation, a convex set is obtained through a projection procedure. Sec-

ond, when finding the array-wise correlation, POCSimpute uses the principle component analysis

approach to capture the global array-wise variation. Then, another convex set is obtained based on

the estimation. Third, when capturing the phenomenon of synchronization loss, the missing values

in different time periods are projected onto a convex set. Finally, according to these three convex

sets, an iterative process estimates a missing value from an initial estimation and approaches the final

solution iteration by iteration, using an equal-weight function which combines the three projectors

until the process converges.

According to the NRMSE values, POCSimpute shows better imputation quality than previous

imputation methods on their testing datasets. Note that the third POCS in POCSimpute is only

applicable on the time series datasets.
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2.2 Imputation Measurements

In most of the missing value imputation methods introduced above, theRoot Mean Square Error

(RMSE) is employed as a standard criterion for measuring the imputation quality, and more recently,

its normalizedversion,Normalized Root Mean Square Error(NRMSE) has been more commonly

used [24, 19, 5, 15, 20, 13, 14, 21, 22, 25, 7, 11]. NRMSE analysis works as follows [7]: Let

E = {E1, E2, E3, . . . , Et} denote the missing entries in the microarray expression matrix. For each

missing value entryEi (i = 1, 2, 3, . . . , t), let e∗i andei correspond to original observed expression

value and the imputed expression value, respectively. The mean of the squared errors is calculated

as

µ =

√√√√1
t

t∑

i=1

(ei − e∗i )2.

The mean of theset original expression values is calculated as

ē =
1
t

t∑

i=1

(e∗i ),

and

σ =

√√√√1
t

t∑

i=1

(e∗i − ē)2

stands for the standard deviation of the original expression values. The NRMSE is then calculated

as the ratio ofµ overσ, i.e., NRMSE =µ
σ . According to the definition of NRMSE, the smaller an

NRMSE value is, the better the corresponding imputation quality is.

In addition to NRMSE, Ouyanget al. [20] suggested that, with known gene cluster informa-

tion, the percentage of mis-clustered genes could be used as a measurement of imputation quality.

However, in most of the proposed missing value imputation methods, either implicitly or explicitly,

the missing values in the target gene are estimated using the genes with similar expression patterns,

the neighbors or the coherent genes. Therefore, using gene cluster information in final imputation

quality measurement may not tell much more than RMSE or NRMSE. Moreover, to the best of our

knowledge, better clustering algorithms are still needed to divide genes into their actual clustering

patterns, and the quality of clustering would affect the measurement to some extent.

Scheelet al. [21] investigated the influence of imputation on the detection of differentially

expressed genes from cDNA microarray data and proposed to use the lost number of differentially

expressed genes as a new measurement of microarray missing value imputation quality. However,

this measurement uses the expression data which has expression values of each channel (red and

green), not their log ratios, and these data are rarely published. Therefore, this measurement cannot

be widely applied on most published microarray expression datasets.
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2.3 Gene Selection and Classification

For the purpose of microarray sample classification, an expression matrix is provided with a label

vector where each label indicates the class membership of its corresponding sample. In diagnosis,

for example, such sample labelling can be added done as long as the kind of disease (or its subtype)

that the sample (patient) has is apparent. Such a dataset that can be used to learn the expression

profiles associated with each class is considered as the training dataset, and subsequently, when-

ever a new sample comes, its class membership can be predicted using a classifier built based on

the training dataset. All the genes in the training dataset can be used to compose the expression

profiles. However, before using the training dataset, a process calledgene selection(or biomarker

identification) is usually indispensably employed to select a subset of genes for building a better

classifier because of two reasons: First, not all the genes contribute to the improvement of sample

classification accuracy. Instead, only a few of them are the most discriminatory genes that either

over-express or under-express under different conditions (or classes), and these genes are the target

genes that should be selected in the gene selection process. Second, by selecting a subset of genes,

the computational workload can be reduced so the genetic profiles can be built more efficiently.

Many gene selection methods have been proposed in the past several years [3, 17, 26, 9, 6].

Among these methods, we adopt four of them in this work, F-test, Cho, CGS-Ftest, and CGS-Cho,

which have been successful in practice.

The first gene selection method used in our work is the F-test gene selection method [3, 4],

which tries to capture the genes that have the largest score among all the genes according to a

scoring function, which is basically a ratio of the inter-class variance over intra-class variance:

score =
∑c

i=1(M̄i − M̄)∑c
i=1

∑nj

j=1(vij − M̄i)
,

wherec is the number of classes in the dataset,M̄i represents the mean expression value of the gene

in classi, M̄ is the mean expression of all the expression values of the gene over all the samples,nj

is the number of samples in classj, andvij is the expression value of the gene in samplej in class

i. According to this scoring function, the F-test method sorts all the genes in the order of decreasing

score order and returns a specified number of top ranked genes.

The second gene selection method used in our work is the Cho gene selection method proposed

by Choet al [9]. For samplei, Cho defines a weighted factorwi, which is1/nk if samplei belongs

to classk. Let W =
∑n

i=1 wi, wheren is the total sample number. The weighted mean expression

valueMj for genej is defined as:

Mj =
n∑

i=1

wi

W
xij .

The weighted standard deviation is defined as:

SDj =

√∑n
i=1(xij−Mj

)2

(n− 1/n)W
.
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wherexij is the expression value of samplei, genej.

The score of genej is calculated as:

scorej =
Mj × SDj

S̄D
,

where

S̄D =

√√√√1
c

c∑
p=1

(Ep − Ē).

Here,c is the number of classes in the dataset,Ep is the centroid expression value of the genes in

classp, andĒ is the mean expression value of these centroid expression values. That is,S̄D is

actually the standard deviation of the centroid expression values of each class. Similar to F-test, the

Cho method also sorts all the genes in the non-increasing score order and returns a specified number

of top ranked genes.

Z. Cai et al. [8] recently proposed to apply a Clustered Gene Selection (CGS) method. CGS

assumes that all the genes in the microarray expression matrix belong to a certain number of clusters,

and the class discrimination strength of genes within the same cluster are similar to each other.

Therefore, when many genes belonging to the same cluster are selected by some gene selection

methods such as F-test and Cho, using all of them could be redundant and keep other significant

genes from being selected due to the pre-specified total number of genes to be selected. CGS first

uses a clustering process for all the genes and then combines with other gene selection methods to

select the genes with the most discrimination strength from each of these clusters. In our work, we

combine the CGS approach with the F-test and Cho gene selection methods to create CGS-Ftest and

CGS-Cho, respectively.
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Chapter 3

Methods

3.1 The Classifiers

In our study, two classifiers, theK-Nearest Neighbors (KNN)-classifier [10] and a linear kernel

Support Vector Machine (SVM)-classifier [12] are adopted for sample class membership prediction.

The KNN-classifier predicts the membership of a testing sample based on the expression values of a

subset of genes that are selected using certain gene selection methods. The classifier first identifies

theK closest samples in the training dataset and then uses the class labels of theseK similar samples

to predict the label of the testing sample through a majority vote. In our experiments, after testing

K from 1 to 10, we set the default value ofK to be5, since in practice it leads to a high and stable

classification accuracy. For the SVM-classifier, when given a set of selected genes from a gene

selection method, the SVM-classifier, which contains multiple SVMs, finds decision hyperplanes

to best separate (soft margin) the labeled samples based on the expression values of these selected

genes. Subsequently, it uses this set of decision hyperplanes to predict the class label of a testing

sample. For more details of how the decision hyperplanes are constructed, the interested readers

may refer to Guyonet al. [12].

3.2 Cross Validation

Given a complete gene expression matrix with all samples being labeled with their class mem-

berships, we employ thel-fold cross validationto avoid the possible data overfitting problem.

For doing thel-fold cross validation, the complete dataset is randomly partitioned intol equal

parts. Each part of thel equal parts is used as thetesting datasetat one time by removing its

sample labels, while the rest(l − 1) parts are used as thetraining dataset. This process is re-

peated for each of thel parts. Based on the classifier built on the training dataset, the sample

labels of the testing dataset are predicted and compared with the original true sample labels. The

percentage of the correctly predicted samples is theclassification accuracyof the classifier. In

the experiments, after testingl = 3, 5, 7, 9, 11, we report the results on the5-fold cross valida-

tion, but similar results (data not shown) present whenl = 3, 7, 9, 11. The random partition pro-
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Figure 3.1:The complete work flow of computing the sample classification accuracies.

cess is repeated for10 times. Consequently, the final classification accuracy is the average over

500(= 10simulations× 10crossvalidation× 5folds) testing datasets.

3.3 The Complete Work flow

In addition to presenting the NRMSE values for all the seven imputation methods on the respective

datasets, we use the microarray sample classification accuracy to demonstrate that the sample classi-

fication accuracy is another very effective measurement for the missing value imputation quality. To

start with, we first randomly simulate the missing values in the original complete gene expression

matrix with certain missing ratios (or missing rates)r (r = 1%−20%). In more details, if a complete

expression matrix containsp genes,n samples andc classes, we randomly pickp × n × r entries

from it and erase them to form a dataset containing missing values. Note that the simulation of the

missing values on the original expression matrix is based on the uniform distribution. Although the

missingness on the original microarray chip may occur not completely at random (e.g., unbalanced

distribution of the hybridization solution on the a chip can lead a group of probes within one area of

the chip darker than the others which may cause a high percent of probe values missing in this area),

due to the development of probe designing technology (Locating redundant probes in different areas

of the chip to avoid simultaneous same probe loss. And when combining signals from the many

probes for a gene into a single estimate of the abundance of that gene, normalization technologies

are used.) and more redundant probes introduced in newly developed microarray chips (e.g., for
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most Affymetrix GeneChip,22 probes are routinely used for each expression measurement and40

for each genotype call [1]), in our simulation, we assume that the missingness occurs at random

as previous studies assumed [14, 5, 22, 11, 20, 24]. Moreover, what we are trying to focus on is

proposal of using gene selection-driven sample classification accuracy to measure the missing value

imputation quality, so as long as imputation are performed on dataset with same missingniss, the re-

sults for downstream analyses are comparable and in the same level. Then, on the simulated missing

value expression matrix, a missing value imputation method is applied to estimate the missing val-

ues. Among the missing value imputation methods which are either commonly used, or most well

known, or most recently published, in our study, we use seven missing value imputation methods,

i.e. COLimpute, ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, LLSimpute, and ILLSim-

pute, to estimate the missing values to obtain an imputed full expression matrix. On an imputed

full expression matrix, the5-fold cross validation method is applied to partition the whole dataset

into two subsets, the training dataset and the testing dataset. On the training dataset, a gene selec-

tion (biomarker identification) method is applied to select a subset of genes with the selected gene

number ranging from1 to 80. The gene selection methods we employed in our study are F-test,

Cho, CGS-Ftest and CGS-Cho. Based on the expression values of the subset of selected genes, two

classifiers, i.e. the KNN classifier and the SVM classifier, are built to predict the class membership

of each sample in the testing dataset. The classification accuracies are then collected. Note that for

each missing ratio, the missing value simulation is repeated for10 times. Therefore, along with the

5-fold cross validation, the associated classification accuracies are the average over500 entities.

To summarize, by regarding the original complete dataset as a dataset of0% missing values, we

have21 missing ratios, each associated with10 simulated datasets (except0%), seven missing value

imputation methods (except0%), four gene selection methods, and2 classifiers, under the5-fold

cross validation scheme, which is repeated for10 times. Figure3.1 illustrates the complete work

flow of computing the sample classification accuracies.
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Chapter 4

Experimental Results

Given a complete microarray gene expression dataset (which also can be regarded as a dataset with

missing ratio0%), based on the uniform distribution, we randomly simulated10 datasets for each of

the missing ratiosr = 1%−20%. On each simulated dataset, all the seven missing value imputation

methods, namely COLimpute, ROWimpute, KNNimpute, SKNNimpute, LLSimpute, ILLSimpute,

and BPCAimpute, were run separately to estimate the missing values. Then, on either the original

complete dataset or the imputed complete dataset, each of the four gene selection methods, namely,

F-test, Cho, CGS-Ftest, and CGS-Cho was applied on the randomly picked4/5 samples to select

x genes, forx = 1, 2, ..., 80. The KNN-classifier and the SVM-classifier were then built based

on thesex selected genes to predict the class memberships of the other1/5 samples. The final

classification accuracies were collected for further statistics.

4.1 Dataset Description

We adopt two real cancer microarray gene expression datasets, the Gliomas dataset [18] and the

Carcinomas dataset [23], in our study.

The Gliomas dataset [18] contains50 samples, in four classes, thecancer glioblastomas, non-

cancer glioblastomas, cancer oligodendrogliomas, andnon-cancer oligodendrogliomas, which have

14, 14, 7, and15 samples, respectively. This dataset is known to have a low quality for sample

classification [18, 27]. Considering that among all the genes, there could exist a certain percent of

noisy genes, housekeeping genes for instance, which do not actually have too much discrimination

strength and are less likely to be selected by any gene selection method, on the whole dataset, we

calculate for each gene its expression standard deviation over all samples, and those genes with

standard deviation lower than a threshold are filtered out. By doing this, we can also improve the

efficiency of the gene selection and the sample classification. After this filtering preprocessing, we

obtain a dataset with4, 434 genes out of the original12000 genes.

The Carcinomas dataset [23] is a relatively larger dataset compared with the Gliomas dataset. It

contains174 samples, which are in11 classes, theOvary, Bladder/ureter, Breast, Colorectal, Gas-
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troesophagus, Kidney, Liver, Prostate, Pancreas, Lung Adeno, andLung Squamous, with class sizes

27, 8, 26, 23, 12, 11, 7, 26, 6, 14, and14, respectively. After the same filtering preprocessing as in

Gliomas dataset, the Carcinomas dataset contains1585 genes comparing to the gene number12533

on the original dataset (Since in this work, we focus on whether the idea of using gene selection

based sample classification to investigate the quality of missing imputations work, rather than ex-

amining how the dataset quality affect the classification accuracy, the dataset size is not too much

concerned here. Also note that large dataset may extremely consume runtime with insignificant af-

fection in the final classification accuracy). We found in our experiment that rather than depressing

the sample classification quality, the filtering preprocessing can affect the sample classification qual-

ity in a positive way, i.e. it can improve the sample classification quality to some extend as long as

proper filtering threshold is chosen.

4.2 Classification Accuracies of the KNN-Classifier

Since we discovered in our experiment that the sample classification accuracies computed based on

the SVM-classifier are not as high as the accuracies computed based on the KNN-classifier, we only

present in this paper the results of the latter classifier, since the purpose of this study is to indicate that

the sample classification accuracy is another effective measurement for the missing value imputation

quality in addition to the NRMSE measurement, rather than searching for the best classifier. For

each gene selection method, under the5-fold cross validation scheme, its corresponding sample

classification accuracy is the average over500 testing datasets on each of the missing ratiosr =

1% − 20%. To simplify our presentation, we concatenate the sequentially applied method names,

i.e. the names of the missing value imputation method, the gene selection method, and the classifier,

to denote the associated5-fold cross validation classification accuracy. For example, ILLSimpute-

CGS-Ftest-KNN denotes the accuracy that is achieved by applying the ILLSimpute missing value

imputation method, followed by the CGS-Ftest to select a subset of genes for building a KNN-

classifier for the class membership prediction of the testing data. Our further statistical analyses

include the sample classification accuracies with respect to a missing value imputation method.

For example, ILLSimpute-KNN denotes the average accuracy over all of the four gene selection

methods, that is, ILLSimpute-Ftest-KNN, ILLSimpute-Cho-KNN, ILLSimpute-CGS-Ftest-KNN,

and ILLSimpute-CGS-Cho-KNN.

4.2.1 TheGliomasDataset

For each of the four gene selection methods, F-test, Cho, CGS-Ftest, and CGS-Cho, we plot a set of

two dimensional figures of the sample classification accuracies computed on the original Gliomas

dataset (missing ratior = 0%, in which the missing value imputation methods are skipped) and the

simulated datasets with missing ratio1%, 2%, 3%, 4%, 5%, 10%, 15%, and20%, respectively. In

such a two dimensional plot, thex-axis is the number of selected genes and they-axis is the5-fold
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cross validation classification accuracy. Figures4.1–4.4plot the classification accuracies for the F-

test gene selection method on the original and the simulated expression datasets with missing ratio

1%, 2%, 3%, 4%, 5%, 10%, 15%, and20%, respectively. Figures4.5 and4.8 plot the classification

accuracies for the Cho gene selection method on original and simulated expression datasets with

missing ratio1%, 2%, 3%, 4%, 5%, 10%, 15%, and20%, respectively. Figures4.9and4.12plot the

classification accuracies for the CGS-Ftest gene selection method on original and simulated expres-

sion datasets with missing ratio1%, 2%, 3%, 4%, 5%, 10%, 15%, and20%, respectively. Figures

4.13and4.16plot the classification accuracies for the CGS-Cho gene selection method on origi-

nal and simulated expression datasets with missing ratio1%, 2%, 3%, 4%, 5%, 10%, 15%, and20%,

respectively.
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Figure 4.1:The 5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Gliomas dataset. The simulated datasets with missing values were im-
puted by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute,
and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.2:The 5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Gliomas dataset. The simulated datasets with missing values were im-
puted by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute,
and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.3:The 5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Gliomas dataset. The simulated datasets with missing values were im-
puted by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute,
and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.

21



 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  10  20  30  40  50  60  70  80

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Number of selected genes

Original
ILLSimpute

BPCAimpute
LLSimpute

SKNNimpute
KNNimpute

ROWimpute
COLimpute

(a) missing ratio 15%

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  10  20  30  40  50  60  70  80

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Number of selected genes

Original
ILLSimpute

BPCAimpute
LLSimpute

SKNNimpute
KNNimpute

ROWimpute
COLimpute

(b) missing ratio 20%

Figure 4.4:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the F-test method, on the Gliomas dataset. The simulated datasets with missing values were imputed
by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute, and
COLimpute. The missing ratios on this set of plots are15% and 20%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.5:The 5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Gliomas dataset. The simulated datasets with missing values were im-
puted by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute,
and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.6:The 5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Gliomas dataset. The simulated datasets with missing values were im-
puted by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute,
and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.7:The 5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Gliomas dataset. The simulated datasets with missing values were im-
puted by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute,
and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.8:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the Cho method, on the Gliomas dataset. The simulated datasets with missing values were imputed
by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute, and
COLimpute. The missing ratios on this set of plots are15% and 20%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.9:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the CGS-Ftest method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.10:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Ftest method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.11:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Ftest method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots
the classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.12:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Ftest method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are15% and20%. The Original plots
the classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.13:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Cho method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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(b) missing ratio 4%

Figure 4.14:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Cho method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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(b) missing ratio 10%

Figure 4.15:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Cho method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots
the classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.
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Figure 4.16:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Cho method, on the Gliomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are15% and20%. The Original plots
the classification accuracies of the classifier on the original Gliomas dataset, i.e.r = 0%.

34



From Figures4.1–4.16, we can see that using different imputation methods in missing value

estimation does affect the subsequent sample classification quality no matter which gene selection

method is used. And as the missing ratio increases, the plots of the sample classification accuracies

of different missing value imputation methods diverge more from each other. Overall, the qualities

of the classification accuracies of some imputation methods, such as ILLSimpute, BPCAimpute,

and LLSimpute, consistently outperform the other imputation methods. The performance of SKN-

Nimpute and ROWimpute are better than the performance of KNNimpute, and the performance of

KNNimpute is better than COLimpute, which has the lowest performance among all these seven

imputation methods. More clearly, Figures4.4(b), 4.8(b), 4.12(b)4.16(b)plot the classification

accuracies of the seven imputation methods using F-test, Cho, CGS-Ftest, and CGS-Cho, respec-

tively, with missing ratior = 20%. In Figure4.4(b), we can see that for the F-test gene selection

method, the classification accuracies on the imputed datasets are worse than that achieved on the

original dataset. Among the seven imputation methods, the performance order from the best to the

worst is ILLSimpute> LLSimpute> BPCAimpute> SKNNimpute> ROWimpute> KNNim-

pute> COLimpute. In Figure4.8(b), using the Cho gene selection method, the performances of

the seven imputation methods plus the original one are in the order ILLSimpute> LLSimpute>

BPCAimpute> Original> SKNNimpute> ROWimpute> KNNimpute> COLimpute. In Figure

4.12(b), ILLSimpute, LLSimpute, Original, and SKNNimpute have similar performance. ROWim-

pute and KNNimpute perform similarly but not as well as the first three; and COLimpute again has

the worst performance. In Figure4.16(b), the performance order is BPCAimpute> LLSimpute>

ILLSimpute> SKNNimpute> KNNimpute> ROWimpute> Original> COLimpute.

By ignoring the detailed gene selection method employed, we calculated the classification ac-

curacy of a missing value imputation method as the average over four values, i.e. the values cor-

responding to the four gene selection methods, and plotted them on Figures4.17, 4.18, 4.19 and

4.20. According to these figures, we can say that overall, ILLSimpute, LLSimpute, and BPCAim-

pute perform equally well whereas BPCAimpute is slightly better than ILLSimpute and LLSimpute

when the missing ratio reaches up to20%. The classification accuracies computed based on the

simulated datasets from these three missing value imputation methods are even higher than the clas-

sification accuracies achieved based on the original dataset. In the other four imputation methods,

SKNNimpute performs better than ROWimpute, ROWimpute performs better than KNNimpute, and

KNNimpute performs better than COLimpute, which has the worst performance among all the seven

imputation methods.

To test this observation, we do a statistical hypothesis test between each pair of imputation

methods based on the classification accuracies calculated from them on gene40, 60, and80 being

selected and on missing ratio20%. We collect all the intermediate classification accuracies generated

during the 5-fold cross validation and by assuming that each set of the10 ∗ 10 ∗ 5 = 500 (10

simulations, 10 cross-validation, 5 folds) classification accuracies from different imputation methods
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on the same number genes being selected have the same standard deviation, we use the right-tail t-

test, where

H0 : µ0 = µ1,

is the null hypothesis and

H1 : µ0 > µ1

is the alternative hypothesis.

Table4.1 collects the significant values (p-values) from each t-test. The hypothesis is between

µ0 (imputation methods in rows) andµ1 (imputation methods in columns). Ranging from0 to 1,

A lower p-value (lower than0.05) indicates it is more likely thatµ0 > µ1 so that the alternative

hypothesisH1 should be accepted and a higher p-value (higher than0.95) indicates it is more likely

µ0 < µ1, andH0 should be accepted if the p-value is between0.05 and0.95. Therefore, according to

the p-values in Table4.1, we can have similar conclusion of the performance of imputation methods

as we have from the classification accuracy plots.

Figure4.21plots the average NRMSE values of all the seven missing value imputation methods

with missing ratior = 1%− 20%. Comparing Figure4.20(b)and Figure4.21, we can find that the

NRMSE values of COLimpute and ROWimpute are quite dissimilar to each other and are far away

from the NRMSE values of the other imputation methods, while in sample classification accuracy

plots, accuracies of different imputation methods are not that far away from each other. Moreover,

according to NRMSE measurement, the imputation quality of KNNimpute is much better than the

imputation quality of ROWimpute, while in classification accuracy measurement, it is not. The

imputation quality of the other imputation methods in both measurements are in the same order.

4.2.2 TheCarcinomasDataset

Similar to the Gliomas dataset, we plot the same set of figures for the Carcinomas dataset. Figures

4.22–4.37plot the sample classification accuracies of the seven imputation methods with missing

ratior = 1%, 2%, 3%, 4%, 5%, 10%, 15%, and20% for the four gene selection methods F-test, Cho,

CGS-Ftest, and CGS-Cho, respectively. Figures4.38, 4.39, 4.40, and4.41plot the average sample

classification accuracies of the seven imputation methods over the four gene selection methods with

missing ratior = 1%, 2%, 3%, 4%, 5%, 10%, 15%, and20%, respectively. According to these

plots, we can see that in general, the performance order from the best to the worst is BPCAimpute

> ILLSimpute> LLSimpute> KNNimpute> COLimpute> SKNNimpute> ROWimpute. This

order is quite different from the order by NRMSE measurement. Figure4.42plots the20 average

NRMSE values of the imputation methods on missing ratior = 1% − 20%. According to the

NRMSE values in Figure4.42, the imputation quality order should be BPCAimpute> LLSimpute

> ILLSimpute> SKNNimpute> KNNimpute> ROWimpute> COLimpute. Note that in Figure

4.42, the NRMSE values of KNNimpute increase exponentially as the missing ratio increases. We

have repeated this particular experiment many times and the same phenomenon was observed. This
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Figure 4.17:The average5-Fold classification accuracies of the KNN-classifier over four gene selec-
tion methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Gliomas dataset. The simulated datasets
with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNim-
pute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are1% and2%.
The Original plots the classification accuracies of the classifier on the original Gliomas dataset, i.e.
r = 0%.
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Figure 4.18:The average5-Fold classification accuracies of the KNN-classifier over four gene selec-
tion methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Gliomas dataset. The simulated datasets
with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNim-
pute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are3% and4%.
The Original plots the classification accuracies of the classifier on the original Gliomas dataset, i.e.
r = 0%.
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Figure 4.19:The average5-Fold classification accuracies of the KNN-classifier over four gene selec-
tion methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Gliomas dataset. The simulated datasets
with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNim-
pute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are5% and10%.
The Original plots the classification accuracies of the classifier on the original Gliomas dataset, i.e.
r = 0%.
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Figure 4.20:The average5-Fold classification accuracies of the KNN-classifier over four gene selec-
tion methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Gliomas dataset. The simulated datasets
with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNim-
pute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are15% and20%.
The Original plots the classification accuracies of the classifier on the original Gliomas dataset, i.e.
r = 0%.
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Gene 40
ILLS BPCA LLS SKNN KNN COL ROW

ILLS 0.5000 0.7258 0.3459 0.0000 0.0000 0.0000 0.0000
BPCA 0.2742 0.5000 0.1585 0.0000 0.0000 0.0000 0.0000
LLS 0.6541 0.8415 0.5000 0.0000 0.0000 0.0000 0.0000

SKNN 1.0000 1.0000 1.0000 0.5000 0.0000 0.0000 0.0037
KNN 1.0000 1.0000 1.0000 1.0000 0.5000 0.0000 0.8754
COL 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
ROW 1.0000 1.0000 1.0000 0.9963 0.1246 0.0000 0.5000

Gene 60
ILLS BPCA LLS SKNN KNN COL ROW

ILLS 0.5000 0.9994 0.9732 0.0001 0.0000 0.0000 0.0000
BPCA 0.0006 0.5000 0.0826 0.0000 0.0000 0.0000 0.0000
LLS 0.0268 0.9174 0.5000 0.0000 0.0000 0.0000 0.0000

SKNN 0.9999 1.0000 1.0000 0.5000 0.0005 0.0000 0.0152
KNN 1.0000 1.0000 1.0000 0.9995 0.5000 0.0000 0.8726
COL 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
ROW 1.0000 1.0000 1.0000 0.9848 0.1274 0.0000 0.5000

Gene 80
ILLS BPCA LLS SKNN KNN COL ROW

ILLS 0.5000 0.9966 0.9902 0.0000 0.0000 0.0000 0.0000
BPCA 0.0034 0.5000 0.3528 0.0000 0.0000 0.0000 0.0000
LLS 0.0098 0.6472 0.5000 0.0000 0.0000 0.0000 0.0000

SKNN 1.0000 1.0000 1.0000 0.5000 0.0036 0.0000 0.0807
KNN 1.0000 1.0000 1.0000 0.9964 0.5000 0.0000 0.9006
COL 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
ROW 1.0000 1.0000 1.0000 0.9193 0.0994 0.0000 0.5000

Table 4.1:P-values (significants) on Gliomas dataset calculated for the right-tail hypothesis test of
each pair of imputation methods (row to column) based on the classification accuracies on gene 40,
60, and 80 being selected and missing ratio 20%.

could be due to the fact that as the missing ratio increases, more inaccurate data spots are chosen

as missing spots in the simulation process. Their values do not accurately measure the true DNA

hybridization intensities while the imputed values could be much closer to the true values. This fact

consolidates our conjecture that the NRMSE measurement does have its limitation in measuring the

imputation quality, and the sample classification accuracy could be a more suitable measurement for

the missing value imputation quality, especially for those datasets having a high percentage of noisy

data.

Similarly, to test this observation, we again do the statistical hypothesis test, t-test, between each

pair of imputation methods based on the classification accuracies calculated from them on gene40,

60, and80 being selected and on missing ratio20%. In Table4.2, we can again have similar conclu-

sion concerning the quality of the imputation methods as we have from the classification accuracy

plots. In the results of the Carcinomas dataset, we also found the situation where some sample

classification accuracies computed based on the simulated dataset are higher than the accuracies

computed based on the original dataset.
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Figure 4.21:The plots of NRMSE values of seven missing value imputation methods ILLSimpute,
BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute, and COLimpute on Gliomas
dataset.
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Figure 4.22:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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(b) missing ratio 4%

Figure 4.23:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.24:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.25:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the F-test method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are15% and20%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.26:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.27:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.28:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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(b) missing ratio 20%

Figure 4.29:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are15% and20%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.30:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Ftest method, on the Carcinomas dataset. The simulated datasets with missing val-
ues were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute,
ROWimpute, and COLimpute. The missing ratios on this set of plots are1% and2%. The Original
plots the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.31:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Ftest method, on the Carcinomas dataset. The simulated datasets with missing val-
ues were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute,
ROWimpute, and COLimpute. The missing ratios on this set of plots are3% and4%. The Original
plots the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.32:The5-Fold classification accuracies of the KNN-classifier built on the genes selected
by the CGS-Ftest method, on the Carcinomas dataset. The simulated datasets with missing val-
ues were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute,
ROWimpute, and COLimpute. The missing ratios on this set of plots are5% and10%. The Original
plots the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.33:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the CGS-Ftest method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are15% and20%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.34:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the CGS-Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are1% and2%. The Original plots the
classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.35:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the CGS-Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are3% and4%. The Original plots the
classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.

56



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  10  20  30  40  50  60  70  80

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Number of selected genes

Original
ILLSimpute

BPCAimpute
LLSimpute

SKNNimpute
KNNimpute

ROWimpute
COLimpute

(a) missing ratio 5%

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  10  20  30  40  50  60  70  80

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Number of selected genes

Original
ILLSimpute

BPCAimpute
LLSimpute

SKNNimpute
KNNimpute

ROWimpute
COLimpute

(b) missing ratio 10%

Figure 4.36:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the CGS-Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are5% and10%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.37:The5-Fold classification accuracies of the KNN-classifier built on the genes selected by
the CGS-Cho method, on the Carcinomas dataset. The simulated datasets with missing values were
imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWim-
pute, and COLimpute. The missing ratios on this set of plots are15% and20%. The Original plots
the classification accuracies of the classifier on the original Carcinomas dataset, i.e.r = 0%.
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Figure 4.38:The average5-Fold classification accuracies of the KNN-classifier over four gene se-
lection methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Carcinomas dataset. The simulated
datasets with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKN-
Nimpute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are1% and
2%. The Original plots the classification accuracies of the classifier on the original Carcinomas
dataset, i.e.r = 0%.
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Figure 4.39:The average5-Fold classification accuracies of the KNN-classifier over four gene se-
lection methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Carcinomas dataset. The simulated
datasets with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKN-
Nimpute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are3% and
4%. The Original plots the classification accuracies of the classifier on the original Carcinomas
dataset, i.e.r = 0%.
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Figure 4.40:The average5-Fold classification accuracies of the KNN-classifier over four gene se-
lection methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Carcinomas dataset. The simulated
datasets with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKN-
Nimpute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are5% and
10%. The Original plots the classification accuracies of the classifier on the original Carcinomas
dataset, i.e.r = 0%.
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(b) missing ratio 20%

Figure 4.41:The average5-Fold classification accuracies of the KNN-classifier over four gene se-
lection methods, F-test, Cho, CGS-Ftest, and CGS-Cho, on the Carcinomas dataset. The simulated
datasets with missing values were imputed by each of ILLSimpute, BPCAimpute, LLSimpute, SKN-
Nimpute, KNNimpute, ROWimpute, and COLimpute. The missing ratios on this plot are15% and
20%. The Original plots the classification accuracies of the classifier on the original Carcinomas
dataset, i.e.r = 0%.
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Gene 40
ILLS BPCA LLS SKNN KNN COL ROW

ILLS 0.5000 0.9970 0.2042 0.0000 0.0000 0.0000 0.0000
BPCA 0.0030 0.5000 0.0003 0.0000 0.0000 0.0000 0.0000
LLS 0.7958 0.9997 0.5000 0.0000 0.0000 0.0000 0.0000

SKNN 1.0000 1.0000 1.0000 0.5000 1.0000 0.9971 0.0000
KNN 1.0000 1.0000 1.0000 0.0000 0.5000 0.0000 0.0000
COL 1.0000 1.0000 1.0000 0.0029 1.0000 0.5000 0.0000
ROW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000

Gene 60
ILLS BPCA LLS SKNN KNN COL ROW

ILLS 0.5000 0.9187 0.7420 0.0000 0.0000 0.0000 0.0000
BPCA 0.0813 0.5000 0.2223 0.0000 0.0000 0.0000 0.0000
LLS 0.2580 0.7777 0.5000 0.0000 0.0000 0.0000 0.0000

SKNN 1.0000 1.0000 1.0000 0.5000 1.0000 0.9988 0.0017
KNN 1.0000 1.0000 1.0000 0.0000 0.5000 0.0000 0.0000
COL 1.0000 1.0000 1.0000 0.0012 1.0000 0.5000 0.0000
ROW 1.0000 1.0000 1.0000 0.9983 1.0000 1.0000 0.5000

Gene 80
ILLS BPCA LLS SKNN KNN COL ROW

ILLS 0.5000 0.9534 0.2499 0.0000 0.0000 0.0000 0.0000
BPCA 0.0466 0.5000 0.0108 0.0000 0.0000 0.0000 0.0000
LLS 0.7501 0.9892 0.5000 0.0000 0.0000 0.0000 0.0000

SKNN 1.0000 1.0000 1.0000 0.5000 1.0000 0.9971 0.0080
KNN 1.0000 1.0000 1.0000 0.0000 0.5000 0.0327 0.0000
COL 1.0000 1.0000 1.0000 0.0029 0.9673 0.5000 0.0000
ROW 1.0000 1.0000 1.0000 0.9920 1.0000 1.0000 0.5000

Table 4.2:P-values (significants) on Carcinomas dataset calculated for the right-tail hypothesis test
of each pair of imputation methods (row to column) based on the classification accuracies on gene
40, 60, and 80 being selected and missing ratio 20%.
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Figure 4.42: The plots of NRMSE values of the seven missing value imputation methods ILL-
Simpute, BPCAimpute, LLSimpute, SKNNimpute, KNNimpute, ROWimpute, and COLimpute on
Carcinomas dataset.
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Chapter 5

Conclusions and Discussion

Although adopting different gene selection methods in our study could finally lead to different sam-

ple classification accuracies, the collected average classification accuracies, which were taken over

four gene selection methods, F-test, Cho, CGS-Ftest, and CGS-Cho, are convincing enough to con-

clude that ILLSimpute, BPCAimpute, and LLSimpute performed almost equally the best on the two

cancer microarray datasets.

The NRMSE measurement is widely adopted in many missing value imputation studies, and

we have identified its potential drawback in the microarray missing value study. That is, when us-

ing NRMSE for measuring the missing value imputation quality, it is presumed that the observed

(original) gene expression dataset contains the gene expression values which all accurately reflect

the actual hybridization intensities, and a missing value imputation method is considered to perform

well if its imputed values are close to the observed expression values. Note that in practical mi-

croarray chips, the boundary between the accepted values and the treated-as-missing values could

be vague, which means within the accepted expression values, there could still exist a consider-

able percentage of values which do not accurately measure the real gene hybridization intensities,

although noises in them may not be significant to the level that they should be treated as missing val-

ues. When simulating the missing value matrix, the missing spots are randomly chosen, and some of

these expression values may actually be inaccurate. Consequently, when a missing value imputation

method has a good performance as measured by NRMSE, it could just reflect the fact that the im-

puted values are closer to theinaccurateobserved values, rather than to the actualtrueones. In most

of our plots, we find that some classification accuracies computed based on the simulated dataset

are higher than the classification accuracies computed based on the original observed dataset. This

could be due to the fact that the imputed expression values are closer to thetrue expression values

than the observed values. Having this consideration, we believe that the sample classification accu-

racy is another effective missing value imputation measurement, in addition to NRMSE, typically

when the input microarray dataset cannot pass the quality control confidently. Nonetheless, when

the expression values of an input microarray dataset are all of high confidence, that is, they do ac-

curately measure the actual DNA hybridization intensities, NRMSE could be a better imputation
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quality measurement, considering both its effectiveness and its computational complexity.

Observing from the classification accuracy plots that some imputed dataset-based classification

accuracies are even higher than the original dataset-based classification accuracies, which suggests

that the quality of the original dataset may not be as good as the imputed dataset, even the imputed

dataset is obtained the random missing value simulation, we believe using some algorithm to correct

(or smooth) the original missing value datasets could be a very attractive future work. For example,

for each gene, along with the sample label information, how much effect a data spot could cause

can be examined by first excluding and then imputing its expression value and calculating their

respective F-test or Cho score differences, and by setting some threshold, potential missing values

on the claimed originaltrue dataset can be identified.

Most of the missing value imputation methods discussed in this dissertation were originally

proposed to be applied on microarray data, however, in fields other than microarray study or even

the biology area, as long as the there are data correlations in the target dataset, the missing value

imputation methods can be applied on them. And to measure the imputation quality, if the equiva-

lent sample class membership information is available, the feature-selection-based (or full-feature-

based) sample classification accuracies can be used as well as NRMSE. For example, if a travel

plan sales company wants to improve their customer service quality, the current customer features

(e.g., income, age, marriage status, interests, etc.) can be collected, which, of course, may con-

tain some missing information. Therefore, the missing value imputation methods can be applied

to predict those missing values, and with the known sample class memberships (in this case, the

plans the customers chose), the imputation quality can be measured and the best imputation method

can be selected. Once the imputation is selected, the missing values for the current customers or

for new-coming customers can be determined based on the selected imputation method which can

help the company to customize more suitable plans for the customers and that the company profit

can be increased as well. This idea can be applied on other research or industrial areas where the

similar application scenarios exist. Moreover, if the sample class memberships are highly reliable,

the sample classification accuracy could be a more appropriate measurement than NRMSE.

Through this study, we confirm that NRMSE is not the best method for measuring missing value

imputation quality, at least in the field of gene expression microarray data. The sample classification

accuracy, as we proposed, is a better, more stable, measurement as demonstrated in our extensive

simulation experiments. And because the sample classification accuracy method is application ori-

ented, when contradicting to the NRMSE result, it should be the more reliable measurement.
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