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Abstract— Gene expression microarray technology has en-
abled advanced biological and medical research, but the data
are well-recognized noisy and must be used with caution, since
they are greatly affected by many experimental factors such as
RNA concentration, spot typing, hybridization condition, and
image analysis. It is highly desirable that the inaccurate data
entries (“stains”) can be identified and subsequently curated.
In this paper, we propose a novel computational method, based
on feature gene selection and sample classification, to efficiently
discover the stains and apply imputation methods to estimate
their values. Extensive experimental results on three Affymetrix
platforms for human cancer diagnosis showed that by picking
only 1–4% data entries as the most likely stains, the smoothed
datasets could be used for better downstream data analyses
such as robust biomarker identification and disease diagnosis.

I. INTRODUCTION

Microarrays, typically high-density oligonucleotide arrays,

such as Affymetrix GeneChip oligonucleotide arrays and

Agilent Dual Mode whole genome gene expression arrays,

can simultaneously assess expression levels of thousands of

genes under a variety of conditions. This high-throughput

technology provides a unique tool for systems biology, and

has important applications in numerous biological and medi-

cal studies. One of the most common and important tasks in

these applications is to compare the gene expression levels

in tissues under different conditions, such as healthy versus

diseased, for effective genetic profiling. Such a task can only

be accomplished with complete and accurate expression data,

which however is often challenging to obtain in practice due

to a number of artifacts in the experiments [10].

Noise in gene expression microarray data comes from

many sources, some of which is caused by experimental

setup, such as insufficient resolution, image corruption, or

even dust and scratches on the slide [20]. Other noise could

be caused by the chip design itself. For example, in general,

probes can over- or under-estimate gene activity [12]. A

probe set in an Affymetrix oligonucleotide array normally

consists of multiple pairs of oligonucleotide probes [8].

Using pre-specified mapping criteria, the expression value

of the probe set can be obtained from the hybridization

levels of these probe pairs. The large number of probe pairs

guarantees a substantially low probability of missing all the

hybridization levels, thus ensuring reading of the expression

value for a probe set. However, although criteria have been

set for assessing the overall quality of a chip, probes have

not been designed to be specific to gene splice variants and
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little sensitivity is promised for detecting localized artifacts,

such as “harshlight” in microarray image. So far there are

no safeguards to signal potential physical blemishes. Another

confounding factor for getting accurate expression data is

cross-hybridization. Oligonucleotide probes often relate not

only to gene products that exactly match the sequence, but

also those with near matches.

On the other hand, all the downstream computational

data analyses require the gene expression dataset to be

complete and accurate. Therefore, it is desirable to identify

the inaccurate data entries (called stains), if any, and adjust

them. Several ideas have focused on discovering inaccurate

data entries. For example, due to ozone degradation, one

channel in a two-channel microarray experiment would pro-

duce poor quality data. There are two possible solutions:

one to exclude one channel, and the other to discard only

the affected arrays. Lynch et al. [11] proposed to combine

these two methods with a linear model to detect affected

positions. Due to variations in experimental conditions, it is

difficult to combine the data from different arrays. Barenco

et al. [3] proposed a simple recursive algorithm to correct

the mismatches in oligonucleotide microarray data, by using

constant genes to rescale the datasets such that expression

data are normalized and consistent. Tran et al. [19] pre-

sented an approach to identify accurate signals and used

a simple correlation between mean and median to adjust

those inaccurate signals. Blemished data are usually outliers

in the dataset, and those caused by different reasons will

have different outlier patterns. Suarez-Farinas et al. [17], [18]

proposed a method to find “harshlight” blemishes in chips

due to physical or chemical problems. Using statistics on a

number of the same type of arrays under similar experimental

conditions, they devised a pattern recognition algorithm to

identify and eliminate a variety of defects.

Here we assume complete microarray datasets and present

a computational method to discover the expression outliers

as inaccurate data entries, then re-estimate them. We evaluate

the quality of the resultant, called smoothed, datasets through

a downstream application — feature gene selection and

the sample classification accuracy based on the selected

feature genes. The rationale supporting such an evaluation

is that only an accurate prediction of sample conditions

can eventually demonstrate the value of the gene expression

microarrays [12]. We have included three real human cancer

gene expression microarray datasets, each obtained using a

common platform, in the experiments to demonstrate the

success of our method. These three human datasets are

the Carcinomas dataset [16], the Ovarian dataset [15], and
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the Gliomas dataset [13]. We calculated the 5-fold cross

validation classification accuracies for the KNN-classifier

and the SVM-classifier, which are built on a number of genes

selected from the smoothed datasets and the original datasets.

The achieved classification accuracies before and after the

data smoothing on all these datasets are statistically different,

indicating that smoothing is able to adjust at least partially

data blemishes.

II. METHODS

The gene expression data generated from microarray ex-

periments is presented as a matrix Ap×n, in which there are

p genes, n samples, and ai j denotes the expression level of

the i-th gene in the j-th sample.

In the 5-fold cross validation scheme, 4
5

of the samples

are used as the training dataset, in which every sample is

labeled by its class membership. To build a sample classifier

for testing sample prediction, a gene selection method is

used to identify a number of discriminatory genes. In this

study, we adopted two existing gene selection methods: F-

test [2] and Scatter [5]. Essentially, each gene selection

method assigns a score to every gene, where a bigger score

indicates a higher class discrimination strength. This scoring

is done on the training dataset. Let si be the score F-test

assigns to gene i. Also, for each entry ai j, F-test ignores

the j-th sample to assign gene i another score s′i. The

value si j = |si − s′i| measures the abnormality of data entry

ai j, and a higher value indicates a more problematic entry.

This way, F-test assigns an abnormality value to each data

entry in the training dataset. Let r denote the percentage of

data entries which our computational method will regard as

inaccurate and subsequently to re-estimate their values. We

call this pre-specified percentage r the inaccurate rate of the

dataset, which ranged from 1% to 30% in our experiments.

Given an r, the top r of the data entries, ranked by the

abnormality values, si j, and under three separate inaccurate

data entry distributions, are identified as inaccurate. We

note that such a process of inaccurate entry identification

relies on the detailed gene selection method, and different

methods might identify different sets of inaccurate entries.

Nevertheless, F-test and Scatter performed quite consistently

in our experiments. Also, the dataset should be large enough,

that is, a sufficient number of genes and a sufficient number

of samples in each class; for otherwise the identification

result could be biased.

The discovered inaccurate data entries are then erased

from the training dataset, i.e., treated as missing. And sub-

sequently a missing value imputation method is called to

impute their values. Right now there are more than a dozen

imputation methods available. In this study, we employed

the weighted k-Nearest Neighbor imputation (KNNimpute)

method [20] (three other methods, SKNNimpute [9], BP-

CAimpute [14], and ILLSimpute [4], were also used, whose

performance were similar but slightly worse than KNNim-

pute, data not shown). KNNimpute is shown to be a simple

yet competitive missing value imputation method. The im-

puted (or smoothed) training dataset is again complete and

is ready for the next step of feature gene selection.

The two gene selection methods, F-test and Scatter, are

re-used to select a number of feature genes on the smoothed

datasets, for sample classifier construction. We included in

this study two classifiers: the k-Nearest Neighbor (KNN)

classifier [6] (we set the default value of k to be 5, after

testing k from 3 to 10) and a linear kernel Support Vector

Machine (SVM) classifier [7].

III. RESULTS AND DISCUSSION

A. Dataset descriptions and inaccurate entry discovery

Three real human cancer gene expression microarray

datasets from three platforms are used in this study. The

Ovarian cancer dataset [15] contains a total of 104 samples in

four classes. serous, endometrioid, mucinous, and clear cell,

which have 53,10,33,8 samples respectively. This dataset

is obtained from Affymetrix GeneChip Hu6800. Besides

Ovarian cancer dataset, the other two cancer datasets are

the Carcinomas dataset [16] and the Gliomas dataset [13].

All computational results are available at Supplementary

Materials [1].

We tested three separate assumptions on the distribution

of the inaccurate data entries inside the expression matrices.

Given a pre-specified inaccurate rate r, in the first assump-

tion, for each gene, the top nr among its n entries are treated

as inaccurate; in the second assumption, for each sample,

the top pr among its p entries are treated as inaccurate;

in the last assumption, the top pnr among all the p × n

entries are treated as inaccurate. For simplicity, we call

them the assumptions on genes, on samples, and on the

whole dataset, respectively. We note that when combining

multiple microarray chips into one single dataset for data

analysis, one has to take into consideration that the indi-

vidual chips were exposed in possibly, might only slightly,

different experimental conditions. Therefore, even after the

proper data normalization to tune the multiple chips into a

common setup, there could be cases where one gene behave

more abnormally than the other, or one chip behave more

abnormally than the other. These three assumptions on the

distribution of inaccurate entries were proposed to examine

all these possibilities.

B. Sample classification accuracies

On each gene expression microarray dataset, for each in-

accurate rate r, we need to collect 4 classification accuracies:

on the original dataset, and on the smoothed dataset based

on uniform distribution assumptions on genes, on samples,

and on the whole dataset, respectively. We use Original,

Gene, Sample, and Whole to denote these 4 classification

accuracies, respectively.

In the 5-fold cross validation scheme, the other 1
5

of the

samples form the testing dataset in which the sample class

labels are blinded to the sample classifiers, built on the

associated training dataset, for prediction. Every 1
5

of the

samples are rotated to be the testing dataset. Note that testing

samples have nothing to do with inaccurate entry discovery.

The percentage of correctly predicted samples (true positives)
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Fig. 1. 5-fold cross validation classification accuracies of F-test-KNNimpute-KNN on the Ovarian dataset, assuming 1–4% inaccurate entries under all
three distribution assumptions, where 1–80 genes were selected.

is the classification accuracy associated with this partition.

The cross validation process is repeated 20 times in our

experiments, and the average classification accuracy is the

final classification accuracy. Note that we have used two

gene scoring methods, the KNNimpute method, and two

classifiers. We concatenate their names to label the classifica-

tion accuracies. For instance, “Gene-1%-F-test-KNNimpute-

KNN” denotes the classification accuracy that is achieved by

applying F-test to discover 1% inaccurate entries for every

gene, using KNNimpute to re-fill their entries, again applying

F-test to select feature genes to build a KNN-classifier, and

running the KNN-classifier for sample class membership

prediction.

Figure 1 plots the classification accuracies of the F-

test-KNNimpute-KNN method on the Ovarian dataset, each

assumed 1–4% inaccurate entries under all three distribution

assumptions. The standard deviations of those 20 5-fold cross

validation classification accuracies on each dataset were all

very small compared to the average classification accuracies,

almost always less than 0.05 and decreasing with the number

of selected genes. These deviations on the Ovarian dataset,

with inaccurate entry distribution assumption on the whole

dataset, are supplied in Supplementary Materials [1]. The

classification accuracies achieved on the smoothed datasets

are almost always higher than those achieved on the original

datasets, where the number of selected feature genes ranges

from 1 to 80. More specifically, under the assumptions on

the whole dataset and on samples, the achieved classification

accuracies intertwine a bit, but they are clearly higher than

the classification accuracies achieved on the original datasets,

particularly when the number of selected genes is large

(> 25). Under the third assumption on genes, the achieved

classification accuracies on the smoothed datasets are mostly

lower than those on the first two smoothed datasets, yet still

slightly higher than those achieved on the original datasets.

It is worth pointing out that, the differences between the

achieved classification accuracies on the original dataset and

the smoothed one vary from dataset to dataset, which might

be due to the quality of the original datasets. Overall, from

these results on the three datasets obtained by Affymetrix

genechips, we may conclude that the inaccurate entry uni-

form distributions on the whole dataset and on samples might

be better than the third assumption on genes. This conclusion

might largely correlate with imperfect experimental condi-

tions for collecting the gene expression data.

C. Difficult samples now correctly predicted

From Figure 1, we see that when assuming 4% whole

dataset inaccurate rate in the Ovarian dataset, F-test-

KNNimpute-KNN reached the highest classification accu-

racy (78.75%) when the KNN-classifier was built on 60

selected genes. Using the same smoothing procedure, in the

leave-one-out cross validation (LOOCV) to select 60 genes,

the achieved classification accuracy by F-test-KNN-classifier

is also 78.75%. We collected the detailed confusion matrix

on the smoothed datasets, and compared it with the LOOCV

sample class prediction confusion matrix on the original

dataset by F-test-KNN-classifier (78.85% versus 72.12%),
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in the following Table 1. Note that there are 9 mucinous

TABLE I

THE LOOCV SAMPLE PREDICTION RESULTS ON THE OVARIAN DATASET

Class Original Smoothed @4%

serous 51 2 47 6

endometrioid 1 5 4 5 5

mucinous 18 15 9 24

clear cell 3 1 4 2 6

samples and 2 clear cell samples, which were difficult for

prediction using the original dataset, now correctly predicted

using the smoothing technique. One also sees that there are

4 serous samples now mis-classified. One possible cause is

the gene selection method F-test. Note that each gene has

its own power to differentiate some specific pairs of classes.

In our experiments, only a limited number of feature genes

were picked and combined with classifiers to perform the

classification. Consequently, when some feature genes that

have more discriminative power to identify the mucinous

and clear cell samples were selected to construct the sample

classifier, the genes that have more discriminative power to

identify the serous samples might be kicked out. In this case,

the prediction on serous samples became worse.

D. Experiments on simulated datasets

In these experiments, we further demonstrate that our

smoothing method can indeed discover the inaccurate data

entries and smooth them to improve dataset quality. We do

this through a simulation study, where a good quality gene

expression microarray dataset is artificially perturbed with

random noise, and examine the performance of a classifier

on the original dataset, the perturbed dataset, the smoothed

dataset based on the original dataset, and the smoothed

dataset based on the perturbed dataset. We use three datasets:

the Carcinomas dataset, the Lung dataset, and the SRBCT

dataset, in this simulation study. We only show the results

on the SRBCT dataset because of page limit. All the other

results can be found in Supplementary Materials [1]. Note

that the 5-fold cross validation classification accuracies of

an F-test-KNN-classifier on these three original datasets are

all higher than 90%, and therefore considered as of good

quality.

On each of the three datasets, we randomly selected 10%

data entries from the whole dataset and perturbed them by

adding to them a 0-mean uniformly distributed noise with

the standard deviation equal to the absolute expression value.

The subsequent smoothing method was used to identify the

same percentage of data entries from the whole dataset, and

treated them as inaccurate. Figure 2 plots the 5-fold cross

validation classification accuracies on the four datasets. To

summarize, though varying a little, the performance of F-test-

KNNimpute-KNN on the two smoothed datasets is slightly

better than on the original dataset, and the performance

on the perturbed dataset is clearly worse. Note that the

original SRBCT dataset is considered as of good quality, and

therefore our smoothing method may only contribute a little
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Fig. 2. 5-fold classification accuracies of F-test-KNNimpute-KNN on the
original, the perturbed with 10% whole dataset inaccurate rate, the smoothed
based on the original, and the perturbed and smoothed SRBCT datasets.

(original versus smoothed original). However, when the noise

is obvious, such as the perturbed datasets, our smoothing

method worked effectively in discovering the inaccurate data

entries and curating them to improve the data quality.

IV. CONCLUSIONS AND FUTURE WORKS

Gene expression microarray datasets are in general noisy.

We proposed a novel computational method to detect those

inaccurate data entries based on their effects on feature

gene selection and the subsequent sample classification. The

extensive experiments showed that the proposed smoothing

method reduced the noise level in the original datasets, and

that the smoothed datasets had significantly better quality

in terms of feature gene selection and sample classification.

Note that for Affymetrix platform, the expression level of a

gene is derived from hybridization values of multiple probes

and the hybridization value of a probe affects the expression

levels of multiple genes (i.e., many-to-many mapping rules).

A possibly more effective smoothing approach is to detect

the inaccurate probe hybridization values, adjust them, and

subsequently re-calculate the affected gene expression val-

ues.

REFERENCES

[1] Supplementary materials: [http://www.cs.ualberta.ca/
∼ghlin/src/WebTools/smoothing.php]

[2] P. Baldi and A. D. Long. Bioinformatics, 17:509–519, 2001.
[3] M. Barenco et al. BMC Bioinformatics, 7:251, 2006.
[4] Z. Cai et al. J. Bioinfo. Comput. Biol., 4:935–957, 2006.
[5] H. Chai and C. Domeniconi. In Proceedings of the Second European

Workshop on Data Mining and Text Mining for Bioinformatics, 2004.
[6] S. Dudoit et al. J. the Amer. Stat. Assoc., 97:77–87, 2002.
[7] I. Guyon et al. Machine Learning, 46:389–422, 2002.
[8] R. A. Irizarry et al. Nucleic Acids Research, 31:4e15, 2003.
[9] K. Y. Kim et al. BMC Bioinformatics, 5:160–169, 2004.

[10] L. Klebanov and A. Yakovlev. Biology Direct, 2:9, 2007.
[11] A. G. Lynch et al. BMC Bioinformatics, 8:26, 2007.
[12] E. Marshall. Science, 306:630–631, 2004.
[13] C. L. Nutt et al. Cancer Research, 63:1602–1607, 2003.
[14] S. Oba et al. Bioinformatics, 19:2088–2096, 2003.
[15] D. R. Schwartz et al. Cancer Research, 62:4722–C472, 2002.
[16] A. I. Su et al. Cancer Research, 61:7388–7393, 2001.
[17] M. Suarez-Farinas et al. BMC Bioinformatics, 6:65, 2005.
[18] M. Suarez-Farinas et al. BMC Bioinformatics, 6:294, 2005.
[19] P. H. Tran et al. Nucleic Acids Research, 30:e54, 2002.
[20] O. Troyanskaya et al. Bioinformatics, 17:520–525, 2001.

5691


	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

