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CHAPTER 1

CLASSIFICATION ACCURACY BASED
MICROARRAY MISSING VALUE
IMPUTATION

Y| SHI, ZHIPENG CAI, GUOHUI LIN?

Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada

Gene expression microarray has been widely employed in biological and medical studies. In
generd, these studies involve the data analyses that require complete gene expression values, which,
however, are not always possible due to various experimental factors. In the past severa years,
more than a dozen of methods have been proposed to impute the microarray missing values, and
most of them adopt the (normalized) root mean squared errors to measure the imputation quality.
Considering the fact that the purpose of missing value imputation is for downstream data analyses,
and among which one of the most important applications is the genetic profiling, we propose to use
the microarray sample classification accuracy based on the imputed expression values to measure the
missing value imputation quality. Our extensive study on five imputation methods, from the most
known ROWimpute and KNNimpute, to the most complexed BPCAimpute and SKNNimpute, to the
most recent ILL Simpute, shows that BPCAimpute and ILL Simpute can fill in the missing values to
achieve the sample classification accuracy as high as that can be achieved on the original complete
expression data.

1Corresponding author.
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1.1 INTRODUCTION

Microarrays, typically thehigh-density oligonucleotidearrayssuch asAffymetrix GeneChip
oligonucleotide (Affy) arrays, can monitor the expression levels of thousands to tens of
thousands of genes simultaneously. Such atechnology provides a unique tool for systems
biology, and has becomeindispensablein numerousbiological and medical studies. One of
the most common and important applications of gene expression microarray isto compare
the gene expression levels in tissues under different conditions, such as wild-type versus
mutant, or healthy versus diseased, for genetic profiling. In general, a subset of a small
number of biomarkers, which are discriminatory genes whose expression levels either in-
crease or decrease under certain conditions, can be identified and together they can be used
to build a classifier that predicts the microarray sample class membership, such as disease
subtype and treatment effectiveness.

Genetic profiling, aswell as many other applications, involves microarray data analysis
which requires compl ete and accurate gene expression values. However, in practice, such
arequirement is often not satisfied due to a number of defectsin microarray experiments.
Thesedefectsinclude systemic factors such asinsuffi cient resol ution and uneven distribution
of fluids, and stochastic factors such as image corruption, dust and scratches on the slides
and glass flaws. All these could create the artifacts on the microarray chips which result
in a certain percentage of expression data corruption[17, 18]. Even with the high-density
oligonucleotide arrays such as Affymetrix GeneChip oligonucleotide (Affy) arrays, ashigh
as 20% percentage of expression spots on the arrays could be blemished which may cover
hundreds of probes and affect the reading of a considerable percent of gene expression
values [17]. Microarray data analyses, such as gene clustering, biomarker identification,
sampl e classification, and genetic and regulatory network prediction, which seek to address
biological or medical issues, only accept complete expression values. Therefore, before
the dataanalysis, the gene expression level s have to be preprocessed in order to impute the
missing values, as well as correct some portion of the blemished data. In the past several
years, more than a dozen of methods have been proposed for microarray missing value
imputation, including ZEROimpute, ROWimpute and COLimpute [1, 18], KNNimpute
and SVDimpute [18], BPCAimpute [13], GMCimpute [14], SKNNimpute[11], L Simpute
[4], CMVE [16], LinCmb [8], Linlmp [15], LLSimpute[10], and ILL Simpute[5].

When applying ZEROimpute, those logarithmic missing gene expression values are
replaced by 0's[1, 18]. By arranging the microarray samplesin theway that arow represents
agene and a column represents asample, amicroarray dataset (which contains anumber of
samples, each of which contains a common set of genes) can be effectively represented as
an expression matrix. |n ROWimpute, amissing entry isfilled with the average expression
level of the corresponding gene across all samples; In COLimpute, amissing entry isfilled
with the average expression level of all the genesin the corresponding sample.

With theadvance of the microarray technol ogy anditsincreasing number of applications,
missing value imputation attracts more attention and several more complexed imputation
methods have been proposed, differing in pivotal ideas. Singular Value Decomposition
(SVDimpute) and the weighted K -Nearest Neighbor (KNNimpute) missing imputation
methods are proposed by Troyanskayaet al [18]. In SV Dimpute, aset of mutually orthogo-
nal expression patterns are obtained and linearly combined to approximate the expressions
of al genes, through the singular value decomposition of the expression matrix. By select-
ing the K most significant eigengenes, amissing valuein thetarget geneisestimated by first
regressing the target gene against these K eigengenes and then using the coefficients of the
regression to estimate the missing value from the linear combination of the K eigengenes.
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In KNNimpute method, for a target gene, its K nearest neighbor genes (or rows) which
do not contain missing values in the same columns as the target gene, are selected. Then
the missing valuesin the target gene are estimated by aweighted linear combination of the
K nearest neighbor genes, where the weights are calculated as the inverse of the distances
between the target gene expression vector and the neighbor gene expression vectors.

Similar to KNNimpute, the Least Square imputation (L Simpute) method is proposed
by Bg et al [4]. It utilizes the least square principle to determine the weights in the linear
combination of the K nearest neighbors, from which the missing values in the target gene
are estimated. Different from LSimpute where nearest neighboring genes are used, the
local least square missing value imputation (ILL Simpute), proposed by H. Kim et al [10],
estimates the missing values using the coherent genes under the Pearson correlation coef-
ficients. Obaet al [13] proposed a microarray missing value imputation method based on
Bayesian Principal Component Analysis(BPCAimpute). BPCAimputeessentially employs
three elementary processes, principal component regression, Bayesian estimation, and an
expectation-maximization-likerepetitive algorithm. It estimates the latent parametersfor a
probabilistic model under the framework of Bayesian inference and estimates the missing
values using the model. Ouyang et al [14] proposed GM Cimpute method, which applies
theideaof Gaussian Mixture Clustering and model averaging. CMVE, aCollateral Missing
Value Estimation, is proposed by Sehgal et al [16], in which for a missing value entry, it
first calculates several missing value estimates according to different scoring functions and
then the overall estimate is distilled from these estimates.

There are severa extensions or variants to the above imputation methods. For example,
SKNNimpute, or Seguential K -Nearest Neighbor imputation, is proposed by K.-Y. Kim
et al [11]. SKNNimpute sequentially imputes missing values from genes with the least
number of missing entries to genes with the most number of missing entries. Within each
iteration of SKNNimpute, the KNNimpute method is executed to impute the missing values
in the target gene, where only those genes who have no missing value or whose missing
values have already been imputed are the candidates of being neighbors. Linlmp, which
fits a gene expression value into a linear model concerning four factors, is proposed by
Scheel et al [15]. LinCmb, which is a convex combination of several imputation methods,
is proposed by Jornsten et al [8]. Most recently, Cai et al [5] proposed an iterated version
of LLSimpute, the ILL Simpute method, for missing value imputation.

Among the above mentioned more than a dozen imputation methods, some of them have
been compared with each other. Infact, most of the compl exed methods have been compared
with ROWimpute and KNNimpute. These comparative studies all adopt a measurement
called the Root Mean Square Error (RMSE), or its normalized variant NRMSE. Let £ =
{Eh, Es, ..., E;} denotethe missing entriesin the microarray expression matrix. For each
missing entry E;, ¢ = 1,2,...,¢, let e] and e; denote the corresponding true expression
value and the imputed expression value, respectively. The mean of the squared errorsis
calculated as

i=1

The mean of these ¢ true expression valuesis

Q]
Il
S
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and the standard deviationis

The NRM SE of theinvolved imputation method on this expression matrix is defined as the
ratio of . over o, i.e, NRMSE = L.

Note that when the expression matrix is given, o is given as a constant. Therefore,
according to the definition of NRM SE, it is obviousthat a smaller NRMSE value indicates
abetter imputation quality. The existing comparison studies show that, under the RM SE or
the NRM SE measurement, some of the above imputation methods consistently performed
better than the others[13, 4, 11, 14, 8, 10, 15, 16, 5]. Typicaly, inthe most recent study in
[5], itisshownthat BPCAimputeand |LL Simputeareboth efficient and effective, regardless
of the microarray dataset type (non-time series, time series dataset with low noise level,
noisy time series) or missing value rate.

The NRM SE measurement presumes that all the observed gene expression levels ac-
curately measure the hybridization intensities of the genes or probes on the microarray
chips. Unfortunately, however, this is not always the case. Gene expression microarray is
considered as a useful technology to provide expression profiles or patterns correlated to
the conditions, but the expression levels of individual genes might not be al accurate. As
we mentioned earlier, even on the high-density oligonucleotide arrays such as Affymetrix
GeneChip oligonucleotide (Affy) arrays, a significant percentage of chips could be blem-
ished, and thereforein the gene expression val ues, a high percentage of them may be noisy
or even should be treated as missing. Nevertheless, the boundary between noisy data or
missing data s often difficult to determine, which red flags the use of only the RM SE or the
NRM SE to measure the imputation quality. It has been suggested that, with known gene
cluster information, one may use the percentage of mis-clustered genes as a measurement
of imputation quality, in addition to NRM SE [14].

Note that in most of the existing missing value imputation methods, either implicitly or
explicitly, the missing valuesin the target gene are estimated using the similarly expressed
genes, the neighbors or the coherent genes. In this sense, it seems that using gene cluster
information in final imputation quality measurement does not really tell much more than
RMSE and NRM SE. Since one of the most important applications of gene expression mi-
croarray is for genetic profiling of the distinct experimental conditions, for example for
disease subtype recognition and disease treatment classification, we propose to adopt one
downsteam microarray data analysis, microarray sample classification, and to use the clas-
sification accuracy to measurethe quality of imputed expressionvalues. Themainimpact of
using classification accuracy asanew measurement isthat in general theimputed expression
val ues themselves are not interesting, while whether or not the imputed expression matrix
can be used in downstream applications is the major concern. To demonstrate that using
classification accuracy is indeed a good measurement, we include two most known impu-
tation methods ROWimpute and KNNimpute, two most complexed methods BPCAimpute
and SKNNimpute, and the most recently proposed method ILL Simpute in our compara
tive study. The computational results on two real cancer microarray datasets with various
simulated missing rates show that both BPCAimpute and |LL Simpute can impute the miss-
ing values such that the classification accuracy achieved on the imputed expression matrix
is as high as that can be achieved on the original complete expression matrix, while the
other methods do not seem to perform well. Some of these results are consistent with the
previous experiments based solely on NRM SE measurement. One tentative conclusion we
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may draw from this study is that, for the purpose of microarray sample classification, both
BPCAimpute and ILLSimpute have aready achieved perfect performance and probably
there is nothing left to do in terms of missing value imputation.

Therest of this chapter is organized as follows: In the next section, those five represen-
tative missing value imputation methods included in this study, ROWimpute, KNNimpute,
BPCAimpute, SKNNimpute, and ILL Simpute, will be briefly introduced. The task of mi-
croarray sample classification, and its associated gene selection, is also introduced, where
we present four representative gene sel ection methods, F-test, T-test, CGS-F-test, and CGS-
T-test. We also briefly describe two classifiers built on the selected genes, the K Nearest
Neighbor (KNN) classifier and the Support Vector Machine (SVM) classifier, along with
the definition of classification accuracy. The descriptions of the two real cancer microarray
datasets and all the computational results are presented in Section 3. We discuss our results
in Section 4. Specifically, we examine the impacts of the adopted gene selection methods.
Section 5 summarizes our conclusions.

1.2 METHODS

We assume there are p genes in the microarray dataset under investigation, and there are
in total n samples/chips/arrays. Let a;; denote the expression level of the i-th genein the
j-th sample, which takes U if it isamissing entry. The expression matrix representing this
microarray dataset is
Apxn = (@ij)pxn-

Let E = {F1, Es, E3, ..., E;} bethe set of al missing value entries in the expression
matrix, where ¢ records the number of missing entries. The missing rate of the dataset is
calculated asr = —X—. Inrea microarray datasets, r ranges from 0% to as high as 20%.

pxXn”®

1.2.1 The Imputation Methods

There are more than a dozen of microarray missing value imputation methods proposed in
the past several years, adopting different mathematical models. For example, ZEROIim-
pute, ROWimpute and COLimpute are quite similar in the sense that they are smple and
do not assume any correlations among the genes, neither the samples. The SVDimputeand
KNNimpute are probably the first non-trivial ones, where SV Dimpute looksfor dependen-
cies while KNNimpute seeks the help from neighbors. With various possible extensions,
generaizations, or modifications, LSimpute, LLSimpute and Linimp are similar to KN-
Nimputein the essence; BPCAimpute, GM Cimpute and CMV E are similar to SV Dimpute.
SKNNimpute applies sequential imputation, trying to use the datain decreasing reliability,
and ILL Simputeimplementsiterated imputation intending to improvethe quality stepwise.
For this reason, we only include ROWimpute, KNNimpute, BPCAimpute, SKNNimpute,
and ILL Simpute as representativesin this study. Note that most of these imputation meth-
ods need the notion of expression similarity between two genes, which is defined in the
following.

Given a target gene that contains missing value entries to be estimated and a candi-
date gene (which should have known expression values corresponding to these missing
value entries in the target gene), all of the missing value entries in the candidate gene are
temporarily filled with the average expression value (row average). Then, by ignoring the
same columnsin both the target gene and the candidate gene, corresponding to the missing
value entries in the target gene, we obtain two expression (sub-) vectors with no missing
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entries. The Euclidean distance between these two vectors is computed and it is taken
as the distance between the target gene and the candidate gene. For example, if the tar-
get geneis (U, 1.5, U, 2.0, -1.2, U, 2.8) and the candidate gene is (1.6, U, U, -0.4, 2.2,
3.8, U), where U denotes a missing value, then the row average for the candidate geneis
i(1.6 — 0.4+ 2.2 + 3.8) = 1.8; and the two vectorswe obtain are (1.5, 2.0, -1.2, 2.8) and
(1.8, -0.4, 2.2, 1.8); and the distance between these two genesis v/18.41 = 4.29 [5]. In
KNNimpute, the K closest candidate genesto the target gene are selected as the neighbors,
or coherent genes, of thetarget gene, where K ispre-specifiedanditisset at 10 inmost of its
implementations[18, 11]. Suppose thetarget geneisi and itsneighborsarei 1, iz, ..., ix.
Let dj. denote the distance between genei and gene i, for 1 < k < K. Then the missing
valuea; ; inthetarget gene< is estimated as

N
Qij = E a2, iwed:
k=1 "F

Note that in the above version of KNNimpute, coherent genes are determined with respect
to the target gene. Another version of KNNimpute is to determine coherent genes to the
target gene with respect to one missing value entry. In this study, we examine the former
version. In SKNNimpute, the missing value imputation is done sequentially and at every
iteration, the gene containing the least number of missing value entries is chosen as the
target gene, and KNNimpute is applied to estimate the missing values in this target gene
where only those genes who have no missing values or whose missing values have aready
been imputed are considered as candidate genes. The K valuein thisinternal KNNimpute
isalsosetto 10 [11].

In LLSimpute [10], the coherent genes to a target genes are similarly determined but
using the Pearson correlation coefficients rather than the Euclidean distance (in LSimpute),
and its number is also pre-specified. Afterwards, the target gene is also represented as a
linear combination of its coherent genes, where the linear combination is done through a
local least square. Essentialy, coefficients in this linear combination are set in the way
that the sum of the square differences between the known expression values in the target
gene and the linear combination of coherent genesis minimized. Though LLSimpute hasa
processto learn what the best number of coherent geneswould be, this number remainsthe
same for al target genes. Cai et al [5] realized that for distinct target genes, the distances
between it and its coherent genesvary alot, and consequently it is not wise to set auniform
number of coherent genes for al target genes. Instead, they proposed to learn a dataset
dependent distance ratio threshold § such that only candidate genes whose distances to
the target genes within the threshold are considered as coherent genes. In addition, they
proposed to iteratively re-impute the missing values using the imputation results from the
last iteration, where LLSimpute is called, for a number of iterations or till the imputed
values converge.

The missing val ue estimation method based on Bayesian Principle Component Analysis
(BPCAiImpute) consists of three primary progresses. They are (1) principle component
regression, (2) Bayesian estimation, and (3) an expectation-maximization-like repetitive
agorithm[13]. Giventhegeneexpression matrix, the principlecomponent regression seeks
to represent every n-dimensional gene expression vector of genei a; = (a1, @iz, - - -, Qin)
as alinear combination of K principal axisvectorsa;,, 1 < k < K:

K
a; = E Ty, ay, + €,
k=1
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where K isarelatively small number (K < n), z;, (1 < k < K) arethe coefficients, or the
so called factor scores, and e; denotes the residual error associated with genei. By using
a pre-specified value of K, the principle component regression obtains z;, and a;, such
that the sum of squared error ||¢||? over the whole dataset is minimized [13]. In Bayesian
estimation process, theresidual errorse; (1 < i < p) andthefactor scoresz;, (1 < k < K)
are assumed to obey normal distributions at first. Then, the Bayesian estimation is used
to obtain the posterior distribution parameters according to the Bayes theorem. In the last
process, an expectation-maximization-like repetitive algorithm is applied to estimate or
re-estimate the missing values until the imputed results converge or the repetitive process
attains the pre-specified iteration numbers.

1.2.2 The Gene Selection Methods

For microarray sample classification purpose, normally an expression matrix is provided
with every samplelabeled by its class. Such adataset is used asthetraining dataset to learn
the genetic profiles associated with each class, and subsequently whenever a new sample
comes, its class membership can be predicted. One can use all the genes to compose the
genetic profiles, but asthere are usually thousands of genesinvolvedin the study while only
tens of samplesin aclass, a process called gene selection is conducted to selected a subset
of discriminatory genes that are either over-expressed or under-expressed. Such a subset
of genes are then fed to construct a classifier which can predict the class membership of a
new sample.

Thereis arich literature on general feature selection. Microarray gene selection only
attracts attention since the technology becomes high-throughput. Nevertheless, gene se-
lection has its unique characteristics, which make itself distinct from the general feature
selection. Many gene selection methods have been proposed in the past decade, though
they all center at how to measure the class discrimination strength for agene. F-test method
[2, 3] triesto identify those genesthat have the greatest inter-class variances and the small-
est intra-class variances. It scores a gene by the ratio of its inter-class variance over its
intra-class variance— agreater scoreindicates a higher discrimination power the gene has.
F-test method sortsall the genesinthe non-increasing score order and returnsapre-specified
number of top ranked genes. In T-test method [19], each gene has a score that is the classi-
fication accuracy of the classifier built on the single gene, and it returns also a pre-specified
number of top scored genes. Within our group, several gene selection methods have been
proposed, among which one of the key ideasis to select only those genes that do not have
overlapping class discrimination strength. Theintention is that using genes having similar
class discrimination strength in building classifiers would be redundant. To this purpose,
we proposed to firstly cluster the genes under some measurements of class discrimination
strength, and then limit the number of genes per cluster to be selected. Combining this
gene clustering idea with F-test and T-test, we have CGS-Ftest and CGS-Ttest gene selec-
tion methods. We use these four gene selection methods, F-test, T-test, CGS-F-test, and
CGS-T-tedt, in this study.

1.2.3 The Classifiers

Two classifiers are adopted in this study. Oneisthe K -Nearest Neighbor (KNN) classifier
[6] and the other isalinear kernel Support Vector Machine (SVM) classifier [7]. The KNN-
classifier predicts the class membership of atesting sample by using the expression values
of (only) the selected genes. It identifies the K closest samplesin the training dataset and
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then uses the class memberships of these K similar samples through a majority vote. In
our experiments, we set the default value of K to be 5, after testing K from 1 to 10. The
SVM-classifier, which contains multiple SVMs, finds decision planesto best separate (soft
margin) the labeled samples based on the expression values of the selected genes. It uses
this set of decision planes to predict the class membership of atesting sample. One may
refer to Guyon et al [7] for more details of how the decision planes are constructed based
on the selected genes.

1.2.4 The Performance Measurements

At the end of experimenta results, we will plot the NRMSE values for al imputation
methods on the respective datasets. In this study, our main purpose is to demonstrate that
using the microarray sample classification accuracy is another very effective measurement.
Given acomplete gene expression matrix with all samples being labeled with their classes,
we adopt the /-fold cross validation to avoid possible data overfitting. To this purpose,
the complete dataset is randomly partitioned into ¢ equal parts, and (¢ — 1) parts of them
are used to form the training dataset, while the other part forms the testing dataset in
which the class labels of the samples are removed. The predicted class memberships for
the testing samples are then compared with the true ones to determine whether or not the
predictioniscorrect. The processis repeated for each part. The percentage of the correctly
predicted samplesisthe classification accuracy of the classifier. In thisstudy, wereport the
experimental results on the 5-fold cross validation, where the partition process is repeated
for 10 times. Consequently, the final classification accuracy is the average over 50 testing
datasets. We remark that ¢-fold cross validationsfor ¢ = 3,7,9, 11 present similar results
(data not shown).

1.2.5 The Complete Work Flow

To demonstrate that microarray sample classification accuracy is a very effective measure-
ment for the imputation methods, we simulated missing values in the original complete
gene expression matrix. On both the original and the imputed gene expression matrices,
the sample classification was done by a classifier, whose classification accuracies were
recorded and compared. In more details, given a complete microarray gene expression
matrix containing p genes and n samplesin L classes, we adopted 5-fold cross validation
scheme to collect the sample classification accuracies for each of the four gene selection
methods, F-test, T-test, CGS-Ftest, and CGS-Ttest, combined with the KNN-classifier and
the SVM-classifier. Thenumber of selected genes, z, rangesfrom 1 to 80. These accuracies
are on the original dataset.

Next, for each of themissing ratesr = 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, we picked
randomly » x p x n entries from the origina gene expression matrix and erased them to
form a dataset containing missing values. The ROWimpute, KNNimpute, SKNNimpute,
BPCAiImpute, and ILL Simpute, were called separately on the simulated dataset to estimate
the missing values. After imputing the missing values in the simulated gene expression
matrix, the subsequent procedure was the same as that for the original complete gene
expression matrix in the above to collect the sample classification accuracies. For each
missing rate, the missing value simulation was repeated for 10 times, and consequently the
associated accuracies are the average over 500 entities.

To summarize, by regarding the original complete dataset as a dataset of 0% missing
vaues, we have 9 missing rates, each associated with 10 simulated datasets (except 0%),
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5 imputation methods, 4 gene selection methods, and 2 classifiers, under the 5-fold cross
validation scheme, which is repeated for 10 times.

1.3 EXPERIMENTAL RESULTS

Given a complete microarray gene expression dataset (regarded as a dataset of 0% miss-
ing values), we simulated 10 datasets for each of the missing rates r = 1%, 2%, 3%,
4%, 5%, 10%, 15%, 20%. On each simulated dataset, all five missing data imputation
methods, ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILL Simpute, were
run separately to estimate the missing values. Afterwards, on either the original complete
dataset or the imputed compl ete dataset, each gene selection method (F-test, T-test, CGS-
Ftest, and CGS-Ttest) was called on randomly picked 80% samples to output = genes, for
x = 1,2,...,80. Each of the KNN-classifier and the SVM-classifier was then built on
these x selected genes to predict the class memberships for the other 20% samples. The
final classification accuracy was collected for further statistics.

Weincludetwo real cancer microarray gene expression datasets, SRBCT dataset [9] and
GLIOMA dataset [12], in this study.

1.3.1 Dataset Descriptions

The SRBCT dataset [9] contains 83 samplesin total, in four classes, the Ewing family of
tumors, Burkitt lymphoma, neuroblastoma, and rhabdomyosarcoma. Every samplein this
dataset contains 2, 308 gene expression values after data preprocessing. Among the 83
samples, 29, 11, 18, and 25 samples belong to the four classes, respectively.

The GLIOMA dataset[12] containsin total 50 samplesin four classes, cancer glioblas-
tomas, non-cancer glioblastomas, cancer oligodendrogliomas, and non-cancer oligoden-
drogliomas, which have 14, 14, 7, and 15 samples, respectively. This dataset is known to
have alower quality for sample classification [12, 20]. In the preprocessing, for each gene,
we cal culated its expression standard deviation over all samples, and those genes with stan-
dard deviation lower than a threshold were filtered. Such a gene filtering is based on the
intuition that if the expression standard deviation of ageneistoo small, it may not havetoo
much discrimination strength and thus is less likely to be selected by any gene selection
method. After the preprocessing, we obtained a dataset with 3, 550 genes.

1.3.2 5-Fold Cross Validation Classification Accuracies

For each combination of a gene selection method and a classifier, its sample classification
accuracy isthe average over 50 testing datasets on the original gene expression dataset, and
over 500 testing datasets on each of themissing ratesr = 1%, 2%, 3%, 4%, 5%, 10%, 15%,
20%, under the 5-fold cross validation scheme. For ease of presentation, we concatenate
the sequentialy applied method names to denote the associated 5-fold cross validation
classification accuracy. For example, ILL Simpute-CGS-Ftest-SVM denotes the accuracy
that is achieved by applying the ILL Simpute method, followed by the CGS-Ftest to select
a certain number of genes for building an SVM-classifier for testing sample membership
prediction. Our further statistics include the sample classification accuracies with respect
to amissing value imputation method, a gene selection method, the gene clustering based
gene selection or the other, and a classifier, to be detailed in the following. For example,
ILL Simpute-SV M denotesthe averageaccuracy over al four geneselection methods, that is
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achieved by applying thelLL Simpute method, followed by agene sel ection method to sel ect
a certain number of genes for building an SVM-classifier for testing sample membership
prediction.

Classification accuracy
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Figurel.l. The5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the F-test method, on the original and simulated SRBCT dataset. The z-axis
|abelsthe number of selected genes, the y-axislabelsthe missing rate, and the z-axis|abelsthe 5-fold
classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILL Simpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.

1.3.2.1 The SRBCT Dataset For each of the four gene selection methods, F-test,
T-test, CGS-Ftest, and CGS-Ttest, we plotted separately the 5-fold cross validation classifi-
cationaccuraciesfor all combinationsof amissing valueimputation method and aclassifier,
on the origina SRBCT dataset (r = 0%, in which the missing value imputation methods
were skipped) and simulated datasets with missing rates 1%, 2%, 3%, 4%, 5%, 10%, 15%
and 20%, respectively. We choseto plot these classification accuraciesin threedimensional
where the z-axis is the number of selected genes, the y-axis is the missing rate, and the
z-axisisthe 5-fold cross validation classification accuracy. Figures1.1.,1.2., 1.3, and 1.4.
plot these classification accuraciesfor the F-test, T-test CGS-Ftest, and CGS-Ttest methods,
respectively. Notethat for the SKNNimputemethod, if it cannot find K (in our experiments,
K = 10) Nearest Neighborswhich satisfy the candidate gene requirements, then it was not
applied on the particular smulated dataset and more had to be simulated. Nevertheless, it
has to be mentioned that once missing rate was higher than 5%, SKNNimpute failed quite
often, and as a consequence, we did not have al the results for SKNNimpute on missing
rates greater than 5%.

From Figures 1.1., 1.2. 1.3., and 1.4., we can see that when the missing rate is less than
or equal to 5% (the five groups of plots to the l€eft), al five imputation methods worked
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Figurel.2. The5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the T-test method, on the original and simulated SRBCT dataset. The z-axis
|abelsthe number of selected genes, the y-axislabelsthe missing rate, and the z-axis|abelsthe 5-fold
classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILL Simpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. » = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.

almost equally well, combined with either of the two classifiers, compared to the baseline
classification accuracies on the origina SRBCT dataset. However, the plots started to
diverge when the missing rate increases to 10%, 15% and 20%. For example, besides
the observation that the classification accuracies of the SVM-classifier were alittle higher
than that of the KNN-classifier (this is more clear with the T-test method, in Figure 1.2.
and the right plot in Figure 1.5.), combined with the same imputation method. Overall,
the general tendencies are that 1) ROWimpute performed slightly better than KNNimpute,
2) ILL Simpute and BPCAimpute performed the best among thefive methods, and 3) thegaps
between the performances became larger with increased missing rate . For missing rate
r = 20%, the classification accuracies are separately plotted in Figure 1.5. and Figure 1.6.,
ineach of whichtheleft plotisfor the F-test/ CGS-Ftest method and theright plot isfor the T-
test/CGS-Ttest method (no SKNNimpute results were available). Itisclearly seen that, the
BPCAimpute and ILL Simpute methods performed consistently the best, the ROWimpute
method performed slightly better than the KNNimpute method, and theimputed datasets by
BPCAimpute and ILL Simpute had almost the same quality asthe original SRBCT dataset,
interms of thefinal sample classification accuracy. Furthermore, the last observation holds
true across all missing rates, astrong demonstration that BPCAimpute and ILL Simpute are
the methods of choices for microarray missing value imputation.

All of the above plots show that in general the KNN-classifier performed alittle worse
thanthe SV M-classifier onthe SRBCT dataset. However, weremark that it isnot necessarily
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Figurel.3. The5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the CGS-Ftest method, on the origina and simulated SRBCT dataset. The
z-axislabelsthe number of selected genes, the y-axislabelsthe missing rate, and the z-axislabelsthe
5-fold classification accuracy. Thesimulated datasetswith missing val ueswereimputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILL Simpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.

the case that the KNN-classifier is always inferior (cf. [5]). By ignoring the detailed gene
selection method and the classifier to cal cul ate the classification accuracy of amissing value
imputation method as the average over 8 values, corresponding to in total 8 combinations
of agene selection method and a classifier. We associated this classification accuracy with
each of the fiveimputation methods. Figure 1.7. plots these classification accuracieson the
SRBCT dataset, with missing rate r = 0% (the original dataset), 1%, 2%, 3%, 4%, 5%,
10%, 15% and 20%, respectively. Again, SKNNimpute only applied to missing rates less
then or equal to 5%. From this 3D plot, one can see again that essentially there was not
much performance difference between the five missing val ue imputation methods when the
missing rate » was less than or equal to 5% (the five groups of plots to the left); But their
performances started to diverge when r > 10%, and again the general tendencies are that
1) ROWimpute perform dightly better than KNNimpute, 2) BPCAimpute and ILL Simpute
performed the best, and 3) the gaps between the performances becamelarger with increased
missingrater. Similarly, for missing rater = 20%, theaverage classification accuraciesare
separately plottedin Figure 1.8. (no SKNNimpute resultswere avail able), where onceagain
one can see that ROWimpute performed slightly better than KNNimpute and BPCAimpute
and ILL Simpute performed the best. Furthermore, in terms of classification accuracy, the
imputed expression matrices by BPCAimpute and | LL Simpute had the same quality asthe
original expression matrix.
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Figurel.4. Theb-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the CGS-Ttest method, on the original and simulated SRBCT dataset. The
z-axislabelsthe number of selected genes, the y-axis|abelsthe missing rate, and the z-axislabelsthe
5-fold classification accuracy. Thesimulated datasetswith missing val ueswereimputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILL Simpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. r = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.
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Figure 1.5.  F-test (left) and T-test (right) performance on the SRBCT dataset simulated with
missing rate r = 20%.

1.3.2.2 The GLIOMA Dataset Ithasbeenrecognizedthat thequality of the GLIOMA
dataset islower than that of the SRBCT dataset[12, 20]. Similarly, for each of the four gene
selection methods, F-test, T-test, CGS-Ftest, and CGS-Ttest, we plotted separately the
5-fold cross validation classification accuracies for all combinations of a missing value
imputation method and a classifier, onthe original dataset (r = 0%) and simulated datasets



14 CLASSIFICATION BASED MISSING VALUE IMPUTATION

oss | if iginal-SVM -+ 4 Eotld - Original-SVM —-+

Classification accuracy

riginal-KNN &
ILLSImpute-SVM ——

KNNi KN & impute-KNN

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of selected genes Number of selected genes

Figure1l.6. CGS-Ftest (Ieft) and CGS-Ttest (right) performance on the SRBCT dataset simulated
with missing rate r = 20%.

Classification accuracy

SKNNimpute L el a0
ROWimpute - el : S®umber of selected genes
BPCAimpute -~ *Missing rate
ILLSimpute ——
Original ----2--

20% 80

Figurel.7. The5-fold classification accuracies, averaged over 8 combinations of agene selection
method and a classifier, on the SRBCT dataset. The z-axis labels the number of selected genes, the
y-axislabelsthe missing rate, and the z-axislabel sthe average classification accuracy. The simulated
datasets with missing values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute,
BPCAimpute, and ILL Simpute. The Original plots the average classification accuracies achieved on
the original SRBCT dataset, i.e. » = 0%. Note that we only applied SKNNimpute to missing rate
less than or equal to 5%.

with missing rates 1%, 2%, 3%, 4%, 5%, 10%, 15% and 20%, respectively. Figures
1.9, 1.10,, 1.11,, and 1.12. plot these classification accuracies for the F-test, T-test CGS-
Ftest, and CGS-Ttest methods, respectively. Again, we did not have complete results for
SKNNimputewhenthemissing rateisgreater than 5%. From theseplots, wecan seethat the
performances of all fiveimputation methods differed alot on every missing rate, and more
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Figure1.8. Average performances of ROWimpute, KNNimpute, BPCAimpute, and ILL Simpute
methods, in terms of classification accuracies, on the SRBCT dataset with missing rate r = 20%.
The average classification accuracies on the original SRBCT dataset are also plotted for comparison
purpose.

significantly with increasing missing rates. Nonetheless, overall, the general tendenciesare
still that 1) ROWimpute performed dlightly better than KNNimpute, 2) ILL Simpute and
BPCAimpute performed the best among the five methods and the imputed datasets by them
have the same quality as the origina one, in terms of the sample classification accuracy,
and 3) the gaps between the performances became larger with increased missing rate r.

For missing rate r = 20%, the classification accuracies are separately plotted in Fig-
ure 1.13. and Figure 1.14., in each of which theleft plot isfor the F-test/ CGS-Ftest method
and theright plot is for the T-test/ CGS-Ttest method (no SKNNimpute results were avail-
able). It isclearly seen that, the BPCAimpute and ILL Simpute methods performed con-
sistently the best, the ROWimpute method performed slightly better than the KNNimpute
method, and the imputed datasets by BPCAimpute and ILL Simpute had almost the same
quality astheoriginal GLIOMA dataset, in terms of thefinal sample classification accuracy.
Furthermore, the last observation holdstrue across all missing rates, astrong demonstration
that BPCAimpute and | L L Simpute are the methods of choicesfor microarray missing value
imputation.

1.4 DISCUSSION

1.4.1 Gene Selection Methods

Clearly, the detailed gene sel ection method adopted in the study will result in different final

sample classification accuracy. The collected average classification accuracies were taken
over al four gene selection methods, F-test, T-test, CGS-F-test, and CGS-T-test, and thus
it is more convincing to conclude that BPCAimpute and |LL Simpute performed the best.

We also compared the performances of the these four adopted gene sel ection methods by
calculating their average classification accuraciesover all the four missing valueimputation
methods ROWimpute, KNNimpute, BPCAimpute, and ILLSimpute (SKNNimpute was
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Figurel.9. The5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the F-test method, on the original and simulated GLIOMA dataset. The
z-axislabelsthe number of selected genes, the y-axislabelsthe missing rate, and the z-axislabelsthe
5-fold classification accuracy. Thesimulated datasetswith missing val ueswereimputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILL Simpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original GLIOMA dataset, i.e. r = 0%.
Note that we only applied SKNNimpute on missing rate less than or equal to 5%.

excluded because it did not apply to large missing rates). These classification accuracies
and the classification accuracies obtained on the original SRBCT dataset are plotted in
Figure 1.15. and Figure 1.16.

Fromthesetwo plots, we can say that onthe SRBCT dataset, F-test/ CGS-Ftest performed
dlightly better than T-test/CGS-Ttest and CGS-Ftest/CGS-Ttest performed dightly better
than F-test/T-test, respectively.

1.4.2 NRMSE Values

We have aso collected the NRM S