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CHAPTER 1

CLASSIFICATION ACCURACY BASED
MICROARRAY MISSING VALUE
IMPUTATION

YI SHI, ZHIPENG CAI, GUOHUI LIN1

Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada

Gene expression microarray has been widely employed in biological and medical studies. In
general, these studies involve the data analyses that require complete gene expression values, which,
however, are not always possible due to various experimental factors. In the past several years,
more than a dozen of methods have been proposed to impute the microarray missing values, and
most of them adopt the (normalized) root mean squared errors to measure the imputation quality.
Considering the fact that the purpose of missing value imputation is for downstream data analyses,
and among which one of the most important applications is the genetic profiling, we propose to use
the microarray sample classification accuracy based on the imputed expression values to measure the
missing value imputation quality. Our extensive study on five imputation methods, from the most
known ROWimpute and KNNimpute, to the most complexed BPCAimpute and SKNNimpute, to the
most recent ILLSimpute, shows that BPCAimpute and ILLSimpute can fill in the missing values to
achieve the sample classification accuracy as high as that can be achieved on the original complete
expression data.

1Corresponding author.
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2 CLASSIFICATION BASED MISSING VALUE IMPUTATION

1.1 INTRODUCTION

Microarrays, typically the high-density oligonucleotide arrays suchas AffymetrixGeneChip
oligonucleotide (Affy) arrays, can monitor the expression levels of thousands to tens of
thousands of genes simultaneously. Such a technology provides a unique tool for systems
biology, and has become indispensable in numerous biological and medical studies. One of
the most common and important applications of gene expression microarray is to compare
the gene expression levels in tissues under different conditions, such as wild-type versus
mutant, or healthy versus diseased, for genetic profiling. In general, a subset of a small
number of biomarkers, which are discriminatory genes whose expression levels either in-
crease or decrease under certain conditions, can be identified and together they can be used
to build a classifier that predicts the microarray sample class membership, such as disease
subtype and treatment effectiveness.

Genetic profiling, as well as many other applications, involves microarray data analysis
which requires complete and accurate gene expression values. However, in practice, such
a requirement is often not satisfied due to a number of defects in microarray experiments.
These defects include systemic factors such as insufficient resolution and unevendistribution
of fluids, and stochastic factors such as image corruption, dust and scratches on the slides
and glass flaws. All these could create the artifacts on the microarray chips which result
in a certain percentage of expression data corruption [17, 18]. Even with the high-density
oligonucleotide arrays such as Affymetrix GeneChip oligonucleotide (Affy) arrays, as high
as 20% percentage of expression spots on the arrays could be blemished which may cover
hundreds of probes and affect the reading of a considerable percent of gene expression
values [17]. Microarray data analyses, such as gene clustering, biomarker identification,
sample classification, and genetic and regulatory network prediction, which seek to address
biological or medical issues, only accept complete expression values. Therefore, before
the data analysis, the gene expression levels have to be preprocessed in order to impute the
missing values, as well as correct some portion of the blemished data. In the past several
years, more than a dozen of methods have been proposed for microarray missing value
imputation, including ZEROimpute, ROWimpute and COLimpute [1, 18], KNNimpute
and SVDimpute [18], BPCAimpute [13], GMCimpute [14], SKNNimpute [11], LSimpute
[4], CMVE [16], LinCmb [8], LinImp [15], LLSimpute [10], and ILLSimpute [5].

When applying ZEROimpute, those logarithmic missing gene expression values are
replaced by 0’s [1, 18]. By arranging the microarray samples in the way that a row represents
a gene and a column represents a sample, a microarray dataset (which contains a number of
samples, each of which contains a common set of genes) can be effectively represented as
an expression matrix. In ROWimpute, a missing entry is filled with the average expression
level of the corresponding gene across all samples; In COLimpute, a missing entry is filled
with the average expression level of all the genes in the corresponding sample.

With the advance of the microarray technologyand its increasing numberof applications,
missing value imputation attracts more attention and several more complexed imputation
methods have been proposed, differing in pivotal ideas. Singular Value Decomposition
(SVDimpute) and the weighted K-Nearest Neighbor (KNNimpute) missing imputation
methods are proposed by Troyanskaya et al [18]. In SVDimpute, a set of mutually orthogo-
nal expression patterns are obtained and linearly combined to approximate the expressions
of all genes, through the singular value decomposition of the expression matrix. By select-
ing the K most significant eigengenes, a missing value in the target gene is estimated by first
regressing the target gene against these K eigengenes and then using the coefficients of the
regression to estimate the missing value from the linear combination of the K eigengenes.
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In KNNimpute method, for a target gene, its K nearest neighbor genes (or rows) which
do not contain missing values in the same columns as the target gene, are selected. Then
the missing values in the target gene are estimated by a weighted linear combination of the
K nearest neighbor genes, where the weights are calculated as the inverse of the distances
between the target gene expression vector and the neighbor gene expression vectors.

Similar to KNNimpute, the Least Square imputation (LSimpute) method is proposed
by Bø et al [4]. It utilizes the least square principle to determine the weights in the linear
combination of the K nearest neighbors, from which the missing values in the target gene
are estimated. Different from LSimpute where nearest neighboring genes are used, the
local least square missing value imputation (ILLSimpute), proposed by H. Kim et al [10],
estimates the missing values using the coherent genes under the Pearson correlation coef-
ficients. Oba et al [13] proposed a microarray missing value imputation method based on
Bayesian Principal Component Analysis (BPCAimpute). BPCAimpute essentially employs
three elementary processes, principal component regression, Bayesian estimation, and an
expectation-maximization-like repetitive algorithm. It estimates the latent parameters for a
probabilistic model under the framework of Bayesian inference and estimates the missing
values using the model. Ouyang et al [14] proposed GMCimpute method, which applies
the idea of Gaussian Mixture Clustering and model averaging. CMVE, a Collateral Missing
Value Estimation, is proposed by Sehgal et al [16], in which for a missing value entry, it
first calculates several missing value estimates according to different scoring functions and
then the overall estimate is distilled from these estimates.

There are several extensions or variants to the above imputation methods. For example,
SKNNimpute, or Sequential K-Nearest Neighbor imputation, is proposed by K.-Y. Kim
et al [11]. SKNNimpute sequentially imputes missing values from genes with the least
number of missing entries to genes with the most number of missing entries. Within each
iteration of SKNNimpute, the KNNimpute method is executed to impute the missing values
in the target gene, where only those genes who have no missing value or whose missing
values have already been imputed are the candidates of being neighbors. LinImp, which
fits a gene expression value into a linear model concerning four factors, is proposed by
Scheel et al [15]. LinCmb, which is a convex combination of several imputation methods,
is proposed by Jörnsten et al [8]. Most recently, Cai et al [5] proposed an iterated version
of LLSimpute, the ILLSimpute method, for missing value imputation.

Among the above mentioned more than a dozen imputation methods, some of them have
been compared with each other. In fact, most of the complexed methods have been compared
with ROWimpute and KNNimpute. These comparative studies all adopt a measurement
called the Root Mean Square Error (RMSE), or its normalized variant NRMSE. Let E =
{E1, E2, . . . , Et} denote the missing entries in the microarray expression matrix. For each
missing entry Ei, i = 1, 2, . . . , t, let e∗i and ei denote the corresponding true expression
value and the imputed expression value, respectively. The mean of the squared errors is
calculated as

µ2 =
1
t

t∑
i=1

(ei − e∗i )
2.

The mean of these t true expression values is

ē =
1
t

t∑
i=1

e∗i ,
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and the standard deviation is

σ =

√√√√1
t

t∑
i=1

(e∗i − ē)2.

The NRMSE of the involved imputation method on this expression matrix is defined as the
ratio of µ over σ, i.e., NRMSE = µ

σ .
Note that when the expression matrix is given, σ is given as a constant. Therefore,

according to the definition of NRMSE, it is obvious that a smaller NRMSE value indicates
a better imputation quality. The existing comparison studies show that, under the RMSE or
the NRMSE measurement, some of the above imputation methods consistently performed
better than the others [13, 4, 11, 14, 8, 10, 15, 16, 5]. Typically, in the most recent study in
[5], it is shown that BPCAimpute and ILLSimpute are both efficient and effective, regardless
of the microarray dataset type (non-time series, time series dataset with low noise level,
noisy time series) or missing value rate.

The NRMSE measurement presumes that all the observed gene expression levels ac-
curately measure the hybridization intensities of the genes or probes on the microarray
chips. Unfortunately, however, this is not always the case. Gene expression microarray is
considered as a useful technology to provide expression profiles or patterns correlated to
the conditions, but the expression levels of individual genes might not be all accurate. As
we mentioned earlier, even on the high-density oligonucleotide arrays such as Affymetrix
GeneChip oligonucleotide (Affy) arrays, a significant percentage of chips could be blem-
ished, and therefore in the gene expression values, a high percentage of them may be noisy
or even should be treated as missing. Nevertheless, the boundary between noisy data or
missing data is often difficult to determine, which red flags the use of only the RMSE or the
NRMSE to measure the imputation quality. It has been suggested that, with known gene
cluster information, one may use the percentage of mis-clustered genes as a measurement
of imputation quality, in addition to NRMSE [14].

Note that in most of the existing missing value imputation methods, either implicitly or
explicitly, the missing values in the target gene are estimated using the similarly expressed
genes, the neighbors or the coherent genes. In this sense, it seems that using gene cluster
information in final imputation quality measurement does not really tell much more than
RMSE and NRMSE. Since one of the most important applications of gene expression mi-
croarray is for genetic profiling of the distinct experimental conditions, for example for
disease subtype recognition and disease treatment classification, we propose to adopt one
downsteam microarray data analysis, microarray sample classification, and to use the clas-
sification accuracy to measure the quality of imputed expression values. The main impact of
using classification accuracy as a new measurement is that in general the imputed expression
values themselves are not interesting, while whether or not the imputed expression matrix
can be used in downstream applications is the major concern. To demonstrate that using
classification accuracy is indeed a good measurement, we include two most known impu-
tation methods ROWimpute and KNNimpute, two most complexed methods BPCAimpute
and SKNNimpute, and the most recently proposed method ILLSimpute in our compara-
tive study. The computational results on two real cancer microarray datasets with various
simulated missing rates show that both BPCAimpute and ILLSimpute can impute the miss-
ing values such that the classification accuracy achieved on the imputed expression matrix
is as high as that can be achieved on the original complete expression matrix, while the
other methods do not seem to perform well. Some of these results are consistent with the
previous experiments based solely on NRMSE measurement. One tentative conclusion we
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may draw from this study is that, for the purpose of microarray sample classification, both
BPCAimpute and ILLSimpute have already achieved perfect performance and probably
there is nothing left to do in terms of missing value imputation.

The rest of this chapter is organized as follows: In the next section, those five represen-
tative missing value imputation methods included in this study, ROWimpute, KNNimpute,
BPCAimpute, SKNNimpute, and ILLSimpute, will be briefly introduced. The task of mi-
croarray sample classification, and its associated gene selection, is also introduced, where
we present four representative gene selection methods, F-test, T-test, CGS-F-test, and CGS-
T-test. We also briefly describe two classifiers built on the selected genes, the K Nearest
Neighbor (KNN) classifier and the Support Vector Machine (SVM) classifier, along with
the definition of classification accuracy. The descriptions of the two real cancer microarray
datasets and all the computational results are presented in Section 3. We discuss our results
in Section 4. Specifically, we examine the impacts of the adopted gene selection methods.
Section 5 summarizes our conclusions.

1.2 METHODS

We assume there are p genes in the microarray dataset under investigation, and there are
in total n samples/chips/arrays. Let aij denote the expression level of the i-th gene in the
j-th sample, which takes U if it is a missing entry. The expression matrix representing this
microarray dataset is

Ap×n = (aij)p×n.

Let E = {E1, E2, E3, . . . , Et} be the set of all missing value entries in the expression
matrix, where t records the number of missing entries. The missing rate of the dataset is
calculated as r = t

p×n . In real microarray datasets, r ranges from 0% to as high as 20%.

1.2.1 The Imputation Methods

There are more than a dozen of microarray missing value imputation methods proposed in
the past several years, adopting different mathematical models. For example, ZEROim-
pute, ROWimpute and COLimpute are quite similar in the sense that they are simple and
do not assume any correlations among the genes, neither the samples. The SVDimpute and
KNNimpute are probably the first non-trivial ones, where SVDimpute looks for dependen-
cies while KNNimpute seeks the help from neighbors. With various possible extensions,
generalizations, or modifications, LSimpute, LLSimpute and LinImp are similar to KN-
Nimpute in the essence; BPCAimpute, GMCimpute and CMVE are similar to SVDimpute.
SKNNimpute applies sequential imputation, trying to use the data in decreasing reliability,
and ILLSimpute implements iterated imputation intending to improve the quality stepwise.
For this reason, we only include ROWimpute, KNNimpute, BPCAimpute, SKNNimpute,
and ILLSimpute as representatives in this study. Note that most of these imputation meth-
ods need the notion of expression similarity between two genes, which is defined in the
following.

Given a target gene that contains missing value entries to be estimated and a candi-
date gene (which should have known expression values corresponding to these missing
value entries in the target gene), all of the missing value entries in the candidate gene are
temporarily filled with the average expression value (row average). Then, by ignoring the
same columns in both the target gene and the candidate gene, corresponding to the missing
value entries in the target gene, we obtain two expression (sub-) vectors with no missing
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entries. The Euclidean distance between these two vectors is computed and it is taken
as the distance between the target gene and the candidate gene. For example, if the tar-
get gene is (U, 1.5, U, 2.0, -1.2, U, 2.8) and the candidate gene is (1.6, U, U, -0.4, 2.2,
3.8, U), where U denotes a missing value, then the row average for the candidate gene is
1
4 (1.6− 0.4 + 2.2 + 3.8) = 1.8; and the two vectors we obtain are (1.5, 2.0, -1.2, 2.8) and
(1.8, -0.4, 2.2, 1.8); and the distance between these two genes is

√
18.41 = 4.29 [5]. In

KNNimpute, the K closest candidate genes to the target gene are selected as the neighbors,
or coherent genes, of the target gene, where K is pre-specified and it is set at 10 in most of its
implementations [18, 11]. Suppose the target gene is i and its neighbors are i 1, i2, . . . , iK .
Let dk denote the distance between gene i and gene ik for 1 ≤ k ≤ K . Then the missing
value ai,j in the target gene i is estimated as

ai,j =
K∑

k=1

1
dk

aik,j.

Note that in the above version of KNNimpute, coherent genes are determined with respect
to the target gene. Another version of KNNimpute is to determine coherent genes to the
target gene with respect to one missing value entry. In this study, we examine the former
version. In SKNNimpute, the missing value imputation is done sequentially and at every
iteration, the gene containing the least number of missing value entries is chosen as the
target gene, and KNNimpute is applied to estimate the missing values in this target gene
where only those genes who have no missing values or whose missing values have already
been imputed are considered as candidate genes. The K value in this internal KNNimpute
is also set to 10 [11].

In LLSimpute [10], the coherent genes to a target genes are similarly determined but
using the Pearson correlation coefficients rather than the Euclidean distance (in LSimpute),
and its number is also pre-specified. Afterwards, the target gene is also represented as a
linear combination of its coherent genes, where the linear combination is done through a
local least square. Essentially, coefficients in this linear combination are set in the way
that the sum of the square differences between the known expression values in the target
gene and the linear combination of coherent genes is minimized. Though LLSimpute has a
process to learn what the best number of coherent genes would be, this number remains the
same for all target genes. Cai et al [5] realized that for distinct target genes, the distances
between it and its coherent genes vary a lot, and consequently it is not wise to set a uniform
number of coherent genes for all target genes. Instead, they proposed to learn a dataset
dependent distance ratio threshold δ such that only candidate genes whose distances to
the target genes within the threshold are considered as coherent genes. In addition, they
proposed to iteratively re-impute the missing values using the imputation results from the
last iteration, where LLSimpute is called, for a number of iterations or till the imputed
values converge.

The missing value estimation method based on Bayesian Principle Component Analysis
(BPCAimpute) consists of three primary progresses. They are (1) principle component
regression, (2) Bayesian estimation, and (3) an expectation-maximization-like repetitive
algorithm [13]. Given the gene expression matrix, the principle component regression seeks
to represent every n-dimensional gene expression vector of gene i a i = 〈ai1, ai2, . . . , ain〉
as a linear combination of K principal axis vectors a lk , 1 ≤ k ≤ K:

ai =
K∑

k=1

xlkalk + εi,



METHODS 7

where K is a relatively small number (K < n), xlk(1 ≤ k ≤ K) are the coefficients, or the
so called factor scores, and εi denotes the residual error associated with gene i. By using
a pre-specified value of K , the principle component regression obtains x lk and alk such
that the sum of squared error ‖ε‖2 over the whole dataset is minimized [13]. In Bayesian
estimation process, the residual errors εi(1 ≤ i ≤ p) and the factor scores xlk(1 ≤ k ≤ K)
are assumed to obey normal distributions at first. Then, the Bayesian estimation is used
to obtain the posterior distribution parameters according to the Bayes theorem. In the last
process, an expectation-maximization-like repetitive algorithm is applied to estimate or
re-estimate the missing values until the imputed results converge or the repetitive process
attains the pre-specified iteration numbers.

1.2.2 The Gene Selection Methods

For microarray sample classification purpose, normally an expression matrix is provided
with every sample labeled by its class. Such a dataset is used as the training dataset to learn
the genetic profiles associated with each class, and subsequently whenever a new sample
comes, its class membership can be predicted. One can use all the genes to compose the
genetic profiles, but as there are usually thousands of genes involved in the study while only
tens of samples in a class, a process called gene selection is conducted to selected a subset
of discriminatory genes that are either over-expressed or under-expressed. Such a subset
of genes are then fed to construct a classifier which can predict the class membership of a
new sample.

There is a rich literature on general feature selection. Microarray gene selection only
attracts attention since the technology becomes high-throughput. Nevertheless, gene se-
lection has its unique characteristics, which make itself distinct from the general feature
selection. Many gene selection methods have been proposed in the past decade, though
they all center at how to measure the class discrimination strength for a gene. F-test method
[2, 3] tries to identify those genes that have the greatest inter-class variances and the small-
est intra-class variances. It scores a gene by the ratio of its inter-class variance over its
intra-class variance — a greater score indicates a higher discrimination power the gene has.
F-test method sorts all the genes in the non-increasingscore order and returns a pre-specified
number of top ranked genes. In T-test method [19], each gene has a score that is the classi-
fication accuracy of the classifier built on the single gene, and it returns also a pre-specified
number of top scored genes. Within our group, several gene selection methods have been
proposed, among which one of the key ideas is to select only those genes that do not have
overlapping class discrimination strength. The intention is that using genes having similar
class discrimination strength in building classifiers would be redundant. To this purpose,
we proposed to firstly cluster the genes under some measurements of class discrimination
strength, and then limit the number of genes per cluster to be selected. Combining this
gene clustering idea with F-test and T-test, we have CGS-Ftest and CGS-Ttest gene selec-
tion methods. We use these four gene selection methods, F-test, T-test, CGS-F-test, and
CGS-T-test, in this study.

1.2.3 The Classifiers

Two classifiers are adopted in this study. One is the K-Nearest Neighbor (KNN) classifier
[6] and the other is a linear kernel Support Vector Machine (SVM) classifier [7]. The KNN-
classifier predicts the class membership of a testing sample by using the expression values
of (only) the selected genes. It identifies the K closest samples in the training dataset and
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then uses the class memberships of these K similar samples through a majority vote. In
our experiments, we set the default value of K to be 5, after testing K from 1 to 10. The
SVM-classifier, which contains multiple SVMs, finds decision planes to best separate (soft
margin) the labeled samples based on the expression values of the selected genes. It uses
this set of decision planes to predict the class membership of a testing sample. One may
refer to Guyon et al [7] for more details of how the decision planes are constructed based
on the selected genes.

1.2.4 The Performance Measurements

At the end of experimental results, we will plot the NRMSE values for all imputation
methods on the respective datasets. In this study, our main purpose is to demonstrate that
using the microarray sample classification accuracy is another very effective measurement.
Given a complete gene expression matrix with all samples being labeled with their classes,
we adopt the �-fold cross validation to avoid possible data overfitting. To this purpose,
the complete dataset is randomly partitioned into � equal parts, and (� − 1) parts of them
are used to form the training dataset, while the other part forms the testing dataset in
which the class labels of the samples are removed. The predicted class memberships for
the testing samples are then compared with the true ones to determine whether or not the
prediction is correct. The process is repeated for each part. The percentage of the correctly
predicted samples is the classification accuracy of the classifier. In this study, we report the
experimental results on the 5-fold cross validation, where the partition process is repeated
for 10 times. Consequently, the final classification accuracy is the average over 50 testing
datasets. We remark that �-fold cross validations for � = 3, 7, 9, 11 present similar results
(data not shown).

1.2.5 The Complete Work Flow

To demonstrate that microarray sample classification accuracy is a very effective measure-
ment for the imputation methods, we simulated missing values in the original complete
gene expression matrix. On both the original and the imputed gene expression matrices,
the sample classification was done by a classifier, whose classification accuracies were
recorded and compared. In more details, given a complete microarray gene expression
matrix containing p genes and n samples in L classes, we adopted 5-fold cross validation
scheme to collect the sample classification accuracies for each of the four gene selection
methods, F-test, T-test, CGS-Ftest, and CGS-Ttest, combined with the KNN-classifier and
the SVM-classifier. The number of selected genes, x, ranges from 1 to 80. These accuracies
are on the original dataset.

Next, for each of the missing rates r = 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, we picked
randomly r × p × n entries from the original gene expression matrix and erased them to
form a dataset containing missing values. The ROWimpute, KNNimpute, SKNNimpute,
BPCAimpute, and ILLSimpute, were called separately on the simulated dataset to estimate
the missing values. After imputing the missing values in the simulated gene expression
matrix, the subsequent procedure was the same as that for the original complete gene
expression matrix in the above to collect the sample classification accuracies. For each
missing rate, the missing value simulation was repeated for 10 times, and consequently the
associated accuracies are the average over 500 entities.

To summarize, by regarding the original complete dataset as a dataset of 0% missing
values, we have 9 missing rates, each associated with 10 simulated datasets (except 0%),
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5 imputation methods, 4 gene selection methods, and 2 classifiers, under the 5-fold cross
validation scheme, which is repeated for 10 times.

1.3 EXPERIMENTAL RESULTS

Given a complete microarray gene expression dataset (regarded as a dataset of 0% miss-
ing values), we simulated 10 datasets for each of the missing rates r = 1%, 2%, 3%,
4%, 5%, 10%, 15%, 20%. On each simulated dataset, all five missing data imputation
methods, ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute, were
run separately to estimate the missing values. Afterwards, on either the original complete
dataset or the imputed complete dataset, each gene selection method (F-test, T-test, CGS-
Ftest, and CGS-Ttest) was called on randomly picked 80% samples to output x genes, for
x = 1, 2, . . . , 80. Each of the KNN-classifier and the SVM-classifier was then built on
these x selected genes to predict the class memberships for the other 20% samples. The
final classification accuracy was collected for further statistics.

We include two real cancer microarray gene expression datasets, SRBCT dataset [9] and
GLIOMA dataset [12], in this study.

1.3.1 Dataset Descriptions

The SRBCT dataset [9] contains 83 samples in total, in four classes, the Ewing family of
tumors, Burkitt lymphoma, neuroblastoma, and rhabdomyosarcoma. Every sample in this
dataset contains 2, 308 gene expression values after data preprocessing. Among the 83
samples, 29, 11, 18, and 25 samples belong to the four classes, respectively.

The GLIOMA dataset[12] contains in total 50 samples in four classes, cancer glioblas-
tomas, non-cancer glioblastomas, cancer oligodendrogliomas, and non-cancer oligoden-
drogliomas, which have 14, 14, 7, and 15 samples, respectively. This dataset is known to
have a lower quality for sample classification [12, 20]. In the preprocessing, for each gene,
we calculated its expression standard deviation over all samples, and those genes with stan-
dard deviation lower than a threshold were filtered. Such a gene filtering is based on the
intuition that if the expression standard deviation of a gene is too small, it may not have too
much discrimination strength and thus is less likely to be selected by any gene selection
method. After the preprocessing, we obtained a dataset with 3, 550 genes.

1.3.2 5-Fold Cross Validation Classification Accuracies

For each combination of a gene selection method and a classifier, its sample classification
accuracy is the average over 50 testing datasets on the original gene expression dataset, and
over 500 testing datasets on each of the missing rates r = 1%, 2%, 3%, 4%, 5%, 10%, 15%,
20%, under the 5-fold cross validation scheme. For ease of presentation, we concatenate
the sequentially applied method names to denote the associated 5-fold cross validation
classification accuracy. For example, ILLSimpute-CGS-Ftest-SVM denotes the accuracy
that is achieved by applying the ILLSimpute method, followed by the CGS-Ftest to select
a certain number of genes for building an SVM-classifier for testing sample membership
prediction. Our further statistics include the sample classification accuracies with respect
to a missing value imputation method, a gene selection method, the gene clustering based
gene selection or the other, and a classifier, to be detailed in the following. For example,
ILLSimpute-SVM denotes the average accuracy over all four gene selection methods, that is
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achieved by applying the ILLSimpute method,followed by a gene selection method to select
a certain number of genes for building an SVM-classifier for testing sample membership
prediction.
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Figure 1.1. The 5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the F-test method, on the original and simulated SRBCT dataset. The x-axis
labels the number of selected genes, the y-axis labels the missing rate, and the z-axis labels the 5-fold
classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. r = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.

1.3.2.1 The SRBCT Dataset For each of the four gene selection methods, F-test,
T-test, CGS-Ftest, and CGS-Ttest, we plotted separately the 5-fold cross validation classifi-
cation accuracies for all combinations of a missing value imputation method and a classifier,
on the original SRBCT dataset (r = 0%, in which the missing value imputation methods
were skipped) and simulated datasets with missing rates 1%, 2%, 3%, 4%, 5%, 10%, 15%
and 20%, respectively. We chose to plot these classification accuracies in three dimensional
where the x-axis is the number of selected genes, the y-axis is the missing rate, and the
z-axis is the 5-fold cross validation classification accuracy. Figures 1.1., 1.2., 1.3., and 1.4.
plot these classification accuracies for the F-test, T-test CGS-Ftest, and CGS-Ttest methods,
respectively. Note that for the SKNNimpute method, if it cannot find K (in our experiments,
K = 10) Nearest Neighbors which satisfy the candidate gene requirements, then it was not
applied on the particular simulated dataset and more had to be simulated. Nevertheless, it
has to be mentioned that once missing rate was higher than 5%, SKNNimpute failed quite
often, and as a consequence, we did not have all the results for SKNNimpute on missing
rates greater than 5%.

From Figures 1.1., 1.2. 1.3., and 1.4., we can see that when the missing rate is less than
or equal to 5% (the five groups of plots to the left), all five imputation methods worked
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Figure 1.2. The 5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the T-test method, on the original and simulated SRBCT dataset. The x-axis
labels the number of selected genes, the y-axis labels the missing rate, and the z-axis labels the 5-fold
classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. r = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.

almost equally well, combined with either of the two classifiers, compared to the baseline
classification accuracies on the original SRBCT dataset. However, the plots started to
diverge when the missing rate increases to 10%, 15% and 20%. For example, besides
the observation that the classification accuracies of the SVM-classifier were a little higher
than that of the KNN-classifier (this is more clear with the T-test method, in Figure 1.2.
and the right plot in Figure 1.5.), combined with the same imputation method. Overall,
the general tendencies are that 1) ROWimpute performed slightly better than KNNimpute,
2) ILLSimpute and BPCAimpute performed the best among the five methods, and3) the gaps
between the performances became larger with increased missing rate r. For missing rate
r = 20%, the classification accuracies are separately plotted in Figure 1.5. and Figure 1.6.,
in each of which the left plot is for the F-test/CGS-Ftest method and the right plot is for the T-
test/CGS-Ttest method (no SKNNimpute results were available). It is clearly seen that, the
BPCAimpute and ILLSimpute methods performed consistently the best, the ROWimpute
method performed slightly better than the KNNimpute method, and the imputed datasets by
BPCAimpute and ILLSimpute had almost the same quality as the original SRBCT dataset,
in terms of the final sample classification accuracy. Furthermore, the last observation holds
true across all missing rates, a strong demonstration that BPCAimpute and ILLSimpute are
the methods of choices for microarray missing value imputation.

All of the above plots show that in general the KNN-classifier performed a little worse
than the SVM-classifier on the SRBCT dataset. However, we remark that it is not necessarily
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Figure 1.3. The 5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the CGS-Ftest method, on the original and simulated SRBCT dataset. The
x-axis labels the number of selected genes, the y-axis labels the missing rate, and the z-axis labels the
5-fold classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. r = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.

the case that the KNN-classifier is always inferior (cf. [5]). By ignoring the detailed gene
selection method and the classifier to calculate the classification accuracy of a missing value
imputation method as the average over 8 values, corresponding to in total 8 combinations
of a gene selection method and a classifier. We associated this classification accuracy with
each of the five imputation methods. Figure 1.7. plots these classification accuracies on the
SRBCT dataset, with missing rate r = 0% (the original dataset), 1%, 2%, 3%, 4%, 5%,
10%, 15% and 20%, respectively. Again, SKNNimpute only applied to missing rates less
then or equal to 5%. From this 3D plot, one can see again that essentially there was not
much performance difference between the five missing value imputation methods when the
missing rate r was less than or equal to 5% (the five groups of plots to the left); But their
performances started to diverge when r ≥ 10%, and again the general tendencies are that
1) ROWimpute perform slightly better than KNNimpute, 2) BPCAimpute and ILLSimpute
performed the best, and 3) the gaps between the performances became larger with increased
missing rate r. Similarly, for missing rate r = 20%, the average classification accuracies are
separately plotted in Figure 1.8. (no SKNNimpute results were available), where once again
one can see that ROWimpute performed slightly better than KNNimpute and BPCAimpute
and ILLSimpute performed the best. Furthermore, in terms of classification accuracy, the
imputed expression matrices by BPCAimpute and ILLSimpute had the same quality as the
original expression matrix.
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Figure 1.4. The 5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the CGS-Ttest method, on the original and simulated SRBCT dataset. The
x-axis labels the number of selected genes, the y-axis labels the missing rate, and the z-axis labels the
5-fold classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original SRBCT dataset, i.e. r = 0%. Note
that we only applied SKNNimpute on missing rate less than or equal to 5%.
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Figure 1.5. F-test (left) and T-test (right) performance on the SRBCT dataset simulated with
missing rate r = 20%.

1.3.2.2 The GLIOMA Dataset It has been recognized that the quality of the GLIOMA
dataset is lower than that of the SRBCT dataset[12, 20]. Similarly, for each of the four gene
selection methods, F-test, T-test, CGS-Ftest, and CGS-Ttest, we plotted separately the
5-fold cross validation classification accuracies for all combinations of a missing value
imputation method and a classifier, on the original dataset (r = 0%) and simulated datasets
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Figure 1.6. CGS-Ftest (left) and CGS-Ttest (right) performance on the SRBCT dataset simulated
with missing rate r = 20%.
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Figure 1.7. The 5-fold classification accuracies, averaged over 8 combinations of a gene selection
method and a classifier, on the SRBCT dataset. The x-axis labels the number of selected genes, the
y-axis labels the missing rate, and the z-axis labels the average classification accuracy. The simulated
datasets with missing values were imputed by each of the ROWimpute, KNNimpute, SKNNimpute,
BPCAimpute, and ILLSimpute. The Original plots the average classification accuracies achieved on
the original SRBCT dataset, i.e. r = 0%. Note that we only applied SKNNimpute to missing rate
less than or equal to 5%.

with missing rates 1%, 2%, 3%, 4%, 5%, 10%, 15% and 20%, respectively. Figures
1.9., 1.10., 1.11., and 1.12. plot these classification accuracies for the F-test, T-test CGS-
Ftest, and CGS-Ttest methods, respectively. Again, we did not have complete results for
SKNNimpute when the missing rate is greater than 5%. From these plots, we can see that the
performances of all five imputation methods differed a lot on every missing rate, and more
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Figure 1.8. Average performances of ROWimpute, KNNimpute, BPCAimpute, and ILLSimpute
methods, in terms of classification accuracies, on the SRBCT dataset with missing rate r = 20%.
The average classification accuracies on the original SRBCT dataset are also plotted for comparison
purpose.

significantly with increasing missing rates. Nonetheless, overall, the general tendencies are
still that 1) ROWimpute performed slightly better than KNNimpute, 2) ILLSimpute and
BPCAimpute performed the best among the five methods and the imputed datasets by them
have the same quality as the original one, in terms of the sample classification accuracy,
and 3) the gaps between the performances became larger with increased missing rate r.

For missing rate r = 20%, the classification accuracies are separately plotted in Fig-
ure 1.13. and Figure 1.14., in each of which the left plot is for the F-test/CGS-Ftest method
and the right plot is for the T-test/CGS-Ttest method (no SKNNimpute results were avail-
able). It is clearly seen that, the BPCAimpute and ILLSimpute methods performed con-
sistently the best, the ROWimpute method performed slightly better than the KNNimpute
method, and the imputed datasets by BPCAimpute and ILLSimpute had almost the same
quality as the original GLIOMA dataset, in terms of the final sample classification accuracy.
Furthermore, the last observation holds true across all missing rates, a strong demonstration
that BPCAimpute and ILLSimpute are the methods of choices for microarray missing value
imputation.

1.4 DISCUSSION

1.4.1 Gene Selection Methods

Clearly, the detailed gene selection method adopted in the study will result in different final
sample classification accuracy. The collected average classification accuracies were taken
over all four gene selection methods, F-test, T-test, CGS-F-test, and CGS-T-test, and thus
it is more convincing to conclude that BPCAimpute and ILLSimpute performed the best.
We also compared the performances of the these four adopted gene selection methods by
calculating their average classification accuracies over all the four missing value imputation
methods ROWimpute, KNNimpute, BPCAimpute, and ILLSimpute (SKNNimpute was
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Figure 1.9. The 5-fold classification accuracies of the SVM-classifier and the KNN-classifier built
on the genes selected by the F-test method, on the original and simulated GLIOMA dataset. The
x-axis labels the number of selected genes, the y-axis labels the missing rate, and the z-axis labels the
5-fold classification accuracy. The simulated datasets with missing values were imputed by each of the
ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-SVM/KNN
plot the classification accuracies of the classifiers on the original GLIOMA dataset, i.e. r = 0%.
Note that we only applied SKNNimpute on missing rate less than or equal to 5%.

excluded because it did not apply to large missing rates). These classification accuracies
and the classification accuracies obtained on the original SRBCT dataset are plotted in
Figure 1.15. and Figure 1.16.

From these two plots, we can say that on the SRBCT dataset, F-test/CGS-Ftest performed
slightly better than T-test/CGS-Ttest and CGS-Ftest/CGS-Ttest performed slightly better
than F-test/T-test, respectively.

1.4.2 NRMSE Values

We have also collected the NRMSE values for the five imputation methods on the simu-
lated SRBCT datasets with all missing rates, which are plotted in Figure 1.17. They again
indicate that ROWimpute performed slightly better than KNNimpute (and SKNNimpute)
and ILLSimpute and BPCAimpute performed the best among the five methods.

1.5 CONCLUSIONS

The performances of missing value imputation methods, BPCAimpute and ILLSimpute,
have previously been shown to be better than most recent similar developments, using
the NRMSE measurement [5]. The performance difference becomes significant when the
missing rate is large. We realized that microarray gene expression data though is able to
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Figure 1.10. The 5-fold classification accuracies of the SVM-classifier and the KNN-classifier
built on the genes selected by the T-test method, on the original and simulated GLIOMA dataset.
The x-axis labels the number of selected genes, the y-axis labels the missing rate, and the z-axis
labels the 5-fold classification accuracy. The simulated datasets with missing values were imputed by
each of the ROWimpute, KNNimpute, SKNNimpute, BPCAimpute, and ILLSimpute. The Original-
SVM/KNN plot the classification accuracies of the classifiers on the original GLIOMA dataset, i.e.
r = 0%. Note that we only applied SKNNimpute on missing rate less than or equal to 5%.

provide a global picture on the genetic profile, yet some portion of it is not reliable due to
various experimental factors. Consequently, using solely the NRMSE measurement could
sometimes be misleading. Considering the fact that missing value imputation is for the
downstream data analysis, among which one of them is the sample classification, we pro-
posed to adopt the classification accuracy as another measurement of imputation quality.
Our simulation study on two real cancer microarray datasets, to include 5 imputation meth-
ods, 4 gene selection methods, and 2 classifiers, demonstrated that classification accuracy is
a very effective measurement, and further confirmed that BPCAimpute and ILLSimpute are
the best imputation methods. Furthermore, the imputed gene expression dataset can reach
the same sample classification accuracy as that can be achieved on the original dataset.
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SVM/KNN plot the classification accuracies of the classifiers on the original GLIOMA dataset, i.e.
r = 0%. Note that we only applied SKNNimpute on missing rate less than or equal to 5%.
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Figure 1.14. CGS-Ftest (left) and CGS-Ttest (right) performance on the GLIOMA dataset
simulated with missing rate r = 20%.
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Figure 1.15. The 5-fold classification accuracies of four gene selection methods, F-test, T-test,
CGS-Ftest, and CGS-Ttest, averaged over 8 combinations of a missing value imputation method and
a classifier, on the SRBCT dataset. The x-axis labels the number of selected genes, the y-axis labels
the missing rate, and the z-axis labels the average classification accuracy.
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Figure 1.16. The 5-fold classification accuracies of four gene selection methods, F-test, T-test,
CGS-Ftest, and CGS-Ttest, averaged over 8 combinations of a missing value imputation method and
a classifier, on the simulated SRBCT dataset with missing rate r = 20%.
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