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ABSTRACT

The protein property prediction and testing
database (PPT-DB) is a database housing nearly 30
carefully curated databases, each of which contains
commonly predicted protein property information.
These properties include both structural (i.e. sec-
ondary structure, contact order, disulfide pairing)
and dynamic (i.e. order parameters, B-factors,
folding rates) features that have been measured,
derived or tabulated from a variety of sources. PPT-
DB is designed to serve two purposes. First it is
intended to serve as a centralized, up-to-date, freely
downloadable and easily queried repository of
predictable or ‘derived’ protein property data. In
this role, PPT-DB can serve as a one-stop, fully
standardized repository for developers to obtain the
required training, testing and validation data needed
for almost any kind of protein property prediction
program they may wish to create. The second role
that PPT-DB can play is as a tool for homology-
based protein property prediction. Users may query
PPT-DB with a sequence of interest and have a
specific property predicted using a sequence simi-
larity search against PPT-DB’s extensive collection
of proteins with known properties. PPT-DB exploits
the well-known fact that protein structure and
dynamic properties are highly conserved between
homologous proteins. Predictions derived from
PPT-DB’s similarity searches are typically 85-95%
correct (for categorical predictions, such as sec-
ondary structure) or exhibit correlations of >0.80
(for numeric predictions, such as accessible
surface area). This performance is 10-20% better
than what is typically obtained from standard
‘ab initio’ predictions. PPT-DB, its prediction utilities

and all of its contents are available at http://
www.pptdb.ca

INTRODUCTION

Proteins are complex polymers that often defy simple
numeric or symbolic descriptions. Their sequences are too
long to memorize, their structures are too complex to
draw, their motions are too convoluted to animate and
their folding processes are too hard to explain. To deal
with these ‘fine grain’ complexities we must often resort to
describing proteins in terms of their ‘coarse grain’ physical
or chemical properties. These coarse-grain properties
include such features as radius of gyration, molecular
weight, isoelectric point, hydrophobicity, secondary struc-
ture, contact order (1), order parameters (2) and folding
rates (1,3). In many cases, these physico-chemical proper-
ties can be accurately calculated or predicted directly
from the protein sequence or the protein’s 3D structure
(4-7). Some properties, such as radius of gyration,
molecular weight and isoelectric point can be easily
calculated using simple formulas or tables (4,6), while
other properties, such as secondary structure, order
parameters and disulfide connectivity are non-trivial to
predict or calculate (2,5,7).

The challenges faced in accurately predicting or
calculating ‘non-trivial’ protein properties has attracted
the interest of many protein chemists, structural biologists
and computational biologists for a very long time. Indeed,
protein property prediction is one of the oldest disciplines
in bioinformatics, with secondary structure prediction
being perhaps the earliest (8) and most frequently
attempted kind of protein property prediction. Since the
1960s many other kinds of protein properties and property
prediction methods have emerged, including methods
to predict or identify beta turns (9), membrane helices
(10), transmembrane barrel proteins (11), signal peptides
(12), disulfide pairings (7) edge or central beta strands (13),
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beta hairpins (14), coiled-coils (15), accessible surface
area (16) and flexibility (17)—to name just a few.

Key to the development of all of these property
prediction methods has been the creation or compilation
of databases that contain the properties of interest that
are to be predicted. Historically these databases served
as the raw material from which to derive statistical or
heuristic rules about certain protein or amino acid
properties (5,18). More recently these databases have
served as the testing, training and validation sets for more
advanced machine-learning methods (such as neural nets,
hidden Markov models and support vector machines)
aimed at improving the accuracy of older protein property
prediction methods (9-17). In almost all cases, the
accuracy of the prediction method is directly dependent
on the size, completeness and accuracy of the testing/
training database. In other words, protein property
databases are absolutely critical to the advancement of
protein property prediction.

Unfortunately, the importance of these databases is
somewhat underplayed in the bioinformatics community.
With the exception of a small number of database
resources such as EVA (19), TMH-Benchmark (20),
SCRATCH (7) and SPdb (21), very few protein property
databases are publicly available or routinely updated.
In many cases, protein property databases that were
painstakingly assembled by a graduate student or post-
doctoral fellow to train their particular predictor are
not (or no longer) publicly available. In other cases, if the
database is available, it is so woefully out of date or its
format is so obscure that it is often more efficient to
regenerate a new database from scratch. Still in other
cases, the precise origin, method of data generation or
the quality of the data is too uncertain to allow the
database to be used. Even if a high quality, continuously
updated protein property database is available, it is
often difficult to locate or access such a resource as
there is no common repository for these kinds of
databases. As a result most labs that wish to develop,
refine or improve upon a given protein property prediction
method must resort to ‘re-inventing the wheel’ and
generate their own database in their own format. This
seems both inefficient and unproductive.

While limited access to high-quality protein property
databases is certainly a concern for many data miners and
software developers, this limited access also has negative
consequence for a large community of users (i.e. scientists
wanting predictions). What is not widely appreciated is
the fact that protein property databases can also be used
as property predictors on their own, especially through
the use of homology-based property prediction. This
simple method of property prediction is based on the
well-known fact that both protein structure and protein
dynamic properties are highly conserved between homo-
logous proteins (22). In homology-based property predic-
tion the sequence of interest is aligned against a database of
sequences with known properties, features or coordinates.
The properties for the highest scoring homolog(s) are then
mapped to the query sequence to create a ‘prediction’.
Certainly the success of homology or comparative model-
ing has clearly shown how coordinate mapping from the
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PDB can be exploited to accurately predict 3D structures
for a large number of query proteins. Similar success has
been achieved in chemical shift prediction and torsion angle
prediction (23,24). More recently, the use of sequence
alignments against large databases of proteins of known
secondary structure has been shown to improve the quality
of secondary structure prediction by a substantial margin
(22). Similar improvements in many other property
predictions are also possible (vide infra). Obviously these
kinds of homology-based predictions are limited to query
proteins that exhibit some degree of sequence identity
to proteins in the database(s). However, with the size of
these protein property databases getting so large,
the probability of finding a match is often >60% (22).

Given the importance of protein property predictions
and the critical need for high-quality protein property
databases, we decided to create an open-access, continu-
ously updated, comprehensive protein property database
called the protein Property Prediction and Testing
Database (PPT-DB). The intent of this database is to
facilitate software development in protein property predic-
tion and to facilitate property prediction by homology. The
PPT-DB currently contains nearly 30 carefully curated
databases, each of which contains ‘non-trivial’ protein
property information. These properties include both struc-
tural and dynamic features that have been measured,
derived or tabulated from a variety of sources (Table 1).
The PPT-DB is designed to serve two purposes. First, it is
intended to serve as a centralized, up-to-date, freely down-
loadable and easily queried repository of predictable or
‘derived’ protein property data. In this role, PPT-DB can
serve as a one-stop, standardized (i.e. uniformly formatted
and carefully validated) repository for software developers
to obtain the required training, testing and validation data
needed for almost any kind of protein property prediction
program they may wish to create. The second role that
PPT-DB can play is as a tool for homology-based protein
property prediction. Users may query PPT-DB with a
sequence of interest and have a specific property predicted
using a sequence similarity search against PPT-DB’s
collection of proteins with known properties. In many
cases these homology-derived property predictions are
substantially better than those that would be obtained
using conventional or ab initio predictors. A more detailed
description of the PPT-DB along with all of its contents
and capabilities follows.

DATABASE DESCRIPTION

PPT-DB is actually a database of databases. As seen
in Table 1, PPT-DB consists of 29 smaller sequence
databases, each of which contains between 41 and 23067
Sequences. Altogether the most recent version of the PPT
database consists of 234 787 sequences (of which 40 254
are unique), occupying a total of 245 Mb of disk space.
So far as we are aware, PPT-DB is the largest and most
complete collection of protein property data that has
ever been assembled. The protein properties covered in
the current release of PPT-DB fall into two broad
categories: (i) structural properties and (i) dynamic
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Table 1. Summary of the content and description of different PPT-DB databases

Database

Description

Database

Description

2 Structure (cytoplasmic)
15002 sequences

EVA 2° Structure Test Set
7117 sequences

2° Structure (membrane
helix)

254 sequences

TMH Benchmark Test Set
2247 sequences

2° Structure (membrane
barrel)

41 sequences

% 2° Structure
(cytoplasmic)

15002 sequences

Beta Turns

14571 sequences

Coiled-coil
824 sequences

Edge/Central Beta Strands
13255 sequences

Beta Hairpins
8600 sequences

Disulfide Bonds
2785 sequences

SPdb (Eukaryotic,
Gram+, Gram—)
2590 sequences

3-state 2° structure assignments
obtained by VADAR (25) for
non-membrane proteins

3-state 2° structure assignments via
VADAR (25) for EVA’s
sequence-unique proteins (19)
2-state 2° structure assignments
obtained via VADAR (25) for helical
membrane proteins

2-state 2° structure assignments for
transmembrane helices from TMH
Benchmark (20)

2-state 2° structure assignments
obtained by VADAR (25) for
trans-membrane barrel proteins

3-state 2° structure content obtained
by VADAR (25) for non-membrane
proteins

S-state beta-turn assignments
obtained via VADAR (25) for
non-membrane proteins

2-state, positional assignments for
coiled coil regions from the Paircoil2
training set (15)

2-state beta strand type assignments
obtained by VADAR (25) and
pattern recognition programs

2-state beta hairpin assignments
obtained by VADAR (25) and
pattern recognition programs
Disulfide bond pairings obtained by
VADAR (25) and PDB comment
fields

Experimentally verified 2-state signal
peptide assignments obtained from
the SPdb (21) grouped via

organism type

Signal Peptide (Eukaryotic,
Gram +, Gram—)

23067 sequences

Accessible Surface Area
(integerized)

14871 sequences

Accessible Surface Area (%)
14871 sequences

B-factor (integerized)
10332 sequences

B-factor
10332 sequences

RMSF (integerized)
2134 sequences

RMSF
2134 sequences

Order Parameter
(integerized)
9800 sequences
Order Parameter
9800 sequences

Contact Order
14769 sequences

Folding Rate
83 sequences

3D Folding Decoys
52 sequences

2-state signal peptide assignments
obtained from SwissProt comment
fields — grouped via organism type

Residue-specific accessible surface
area obtained via VADAR (25) and
scaled to values between 0 and 9
Residue-specific accessible surface
area obtained via VADAR (25) and
converted to percentage values

Residue-specific B-factors obtained
directly from PDB files of X-ray
structures and scaled to values
from 0 to 9

Residue-specific B-factors obtained
directly from PDB (26) files of
non-membrane X-ray structures
Scaled (0-9) residue-specific RMSF
values determined from NMR
structures via SuperPose (29)

Residue-specific root mean square
fluctuation (RMSF) determined from
NMR structures via SuperPose (29)

Scaled (0-9) residue-specific order
parameter (model free) determined
using Contact Model method (2)

Residue-specific order parameter
(model free) determined using
Contact Model method (2)

Contact order calculated using
method of Plaxco er al. (1) directly
from PDB coordinates

Experimentally measured folding
rates (In[k¢]) obtained from multiple
sources (1,3)

PDB coordinates for misfolded or
improperly folded proteins generated
via different 3D prediction tools

properties. The structural properties consist of features
that define some aspect of the secondary or tertiary
structure of a protein such as secondary structure content,
helix location, beta strand location, random coil location,
beta turn location, coil—coil location, disulfide bond
patterns, signal peptides, contact order, etc. The dynamic
properties consist of features that define some aspect of
the motion, flexibility or rate processes for a protein, such
as root-mean square fluctuation (RMSF), B-factors,
folding rate (In[k]) or order parameters. Some of these
properties are global, meaning that one or two numbers
describe the property for the entire protein (such as
folding rate or contact order). Other properties are local
or residue-specific, meaning that individual residues are
assigned a value or property (such as secondary structure,
B-factors or disulfide pairings).

Every protein property database in PPT-DB, with the
exception of the folding decoy database, consists of
sequences in a FASTA-like format. The folding decoy
database is unique among PPT-DB’s property databases
as it actually consists of coordinate data rather than pure

sequence data. Among the 28 pure sequence databases in
the PPT-DB, each sequence is annotated with the name of
the sequence, the SwissProt accession number (if it exists)
and a PDB accession number (if it exists). Global protein
properties (folding rate or contact order) are always
displayed on the FASTA header line, while local proper-
ties are displayed on a line immediately below the
sequence, under the residue(s) with that property (see
Figure 1 for examples). For certain properties (B-factors,
RMSF, order parameters) the data are stored and
displayed in two different formats—horizontally and
vertically. The horizontal (FASTA) format requires that
the multi-digit numbers be scaled to a single digit integer
value between 0 and 9 so that they can be displayed
directly underneath the single-character sequence data.
The vertical format displays both the sequence and the
actual (i.e. multi-digit, real) numbers for the associated
property in vertical columns. Additional details about the
format, content, scaling and labeling conventions in each
database are given in the ‘Database Details’ link located at
the top of each database query page.
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horizontal or FASTA format and (C) showing the vertical or column format for displaying residue-specific values/properties that are multi-digit
numbers.
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As mentioned earlier, the PPT-DB is a dual-purpose
resource, serving as either a fully downloadable database
for software developers and data miners or as a general
property prediction service for protein chemists and
structural biologists. Access to both components of
PPT-DB is through a relatively simple web interface
(Figure 1). As seen in this figure, the left margin of the
PPT-DB home page consists of a hyperlinked list of all of
its component databases. Clicking on any one of these
sub-database hyperlinks generates a database-specific
query page (Figure 1A). At the top of each database
query page is the name of the protein property database
followed by a ‘Database Details’ button. Clicking on this
button provides detailed information on the database
format and how the database was constructed
(Figure 1A). Below this (with the exception of the folding
decoy database) is a text search box. Users may search
their selected database using the protein name (or part
thereof), the SwissProt ID (or part thereof), PDB ID
(or part thereof) or any other text within the sequence
header. This text search will rapidly generate a 3-column
hyperlinked table showing the name of the protein, the
SwissProt ID and the PDB ID. Clicking on the protein
name will display that proteins sequence along with its
PPT-DB property annotations. Clicking on the SwissProt
ID will open the corresponding SwissProt entry for that
protein while clicking on the PDB ID will open the
corresponding PDB web page for that protein.

The PPT-DB is also searchable via sequence queries
using a local version of BLAST. However, the main
purpose of PPT-DB’s BLAST search is not necessarily
to locate a given protein in the database, but rather to
predict the properties of a query (i.e. an unknown or
uncharacterized) protein through a technique known
as homology-based property prediction or homology-
based property mapping (22-24). In other words, the
BLAST sequence search is part of PPT-DB’s general
protein property prediction service. This service is primar-
ily intended for protein chemists, molecular biologists and
structural biologists. Details concerning the performance
of these property predictions are described in the ‘Database
Details’ link at the top of each database query page, as well
as in the section entitled ‘Protein Property Prediction using
PPT-DB’ presented later in this manuscript. PPT-DB’s
BLAST search accepts both FASTA and ‘raw’ sequence
data as input and uses a default E (expect) value of 107> as
a cutoff for selecting sequence matches. Each BLAST query
in the PPT-DB has an ‘Example’ button which uploads a
sample sequence, allowing new users to test PPT-DB’s
search utilities and investigate the output format for each
kind of database query. Figure 1B and C illustrate the
type of output generated by PPT-DB’s BLAST search,
showing examples of both the horizontal and vertical
output formats. The PPT-DB also supports BLAST
queries against all of PPT-DB’s protein properties through
the ‘All Properties’ database located at the top of the
database list. This particular feature allows users to
‘predict’ all PPT-DB properties (24 of 28) that can be
displayed in a FASTA (horizontal) format.

At the bottom of ecach database query page is
the database download page. This is a hyperlinked table
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providing information about the version number,
the release date, the size and number of sequences in
each version of a given PPT database. Pressing on the
‘Click to Download’ link allows users to retrieve or install
a local copy of each PPT sub-database on their own
computer. The structure and annotation details for each
version of every PPT-DB sub-database are contained in a
header at the top of each database file. All of PPT-DB’s
databases are stored as simple, uncompressed text files.
The ‘Download’ section of the PPT-DB is primarily
intended to support the activities of software developers
interested in training, testing and validating their property
prediction software or data miners interested in extracting
statistics, trends or heuristics about certain protein
properties. As described in the following section, every
effort is made to ensure that these downloadable data-
bases are as current, complete and correct as possible.

DATABASE PREPARATION, QUALITY
ASSURANCE AND CURATION

Table 1 briefly describes the sources, protocols or
programs used to generate most of the databases in
PPT-DB. Additional details concerning the preparation
and maintenance of each database are provided in the
‘Database Details’ link located in PPT-DB’s menu bar or
via the ‘Database Details’ button located within each
PPT-DB sub-database. As seen from Table 1, many of the
databases created for PPT-DB were developed internally
using a program called VADAR (25) to help derive
or extract the data from existing PDB files. Other PPT
databases were assembled from information contained
explicitly in SwissProt (26) or the PDB (27). In these cases,
database-specific programs were written to extract data
from SwissProt headers or PDB comment fields and to
map this information on to the sequence extracted
from the corresponding database. Essentially, all data-
bases that were primarily derived from the PDB
(or subsequently by VADAR) were processed by the
PDB culling/filtering service called PISCES (28).
Structures were selected using a 95% identity sequence-
redundancy cutoff and a requirement for better than 3 A
resolution (for X-ray structures). These files were further
filtered to remove electron microscopy models and protein
chains having fewer than 30 residues.

While the vast majority of the databases in PPT-DB
were derived using automatic methods, some databases
(such as the transmembrane helix, the transmembrane
beta barrel database, the folding rate and folding decoy
database) were assembled manually. Other databases,
such as the beta hairpin and the beta edge/central strand
were created using specialized programs that re-inter-
preted standard VADAR output. Still other databases
such as EVA (19), SPdb (21), the Coiled—Coil/Paircoil2
database (15) and TMH-Benchmark (20) were obtained
from external sources but were re-formatted and manually
edited or upgraded to make them compatible with the
PPT-DB annotation standards.

Each database and each update to a database is
numbered and dated allowing a well-defined audit trail
to be assembled. This is intended to allow external



software developers and external data miners the oppor-
tunity to share and compare testing/training data. With
the exception of the signal peptide databases, almost all
sequences in the PPT-DB were derived from the original
PDB sequence file. As a consequence, the sequence for the
corresponding SwissProt entry may sometimes differ from
the sequence listed in either the PPT-DB or the PDB.
All databases, with the exception of the folding decoys
database and the folding rate database, have automated or
semi-automated scripts to facilitate updating. Depending
on their size and ease of curation, PPT-DB databases are
updated as frequently as once per month (i.e. secondary
structure databases) or as infrequently as once per year
(i.e. the folding rate database).

In preparing and updating the PPT-DB, every effort
has been made to ensure that each database is as complete,
correct and current as possible. Certainly many of the
programs used in the data generation process, such as
VADAR (25) and SuperPose (29), have had more than a
decade of testing and are considered very robust.
Nevertheless, a ‘PPT-DB sanity checker’ has been written
to ensure that impossible numeric values or disallowed
characters are flagged in any existing database and any
subsequent updates. These problem entries are then
manually assessed and manually corrected as required.
As a further quality control measure, spot checks are
routinely performed on many entries by senior members
of the curation group, including two PhD-level
biochemists.

PROPERTY PREDICTION USING PPT-DB

One of the most useful and important applications
of PPT-DB lies in its ability to help predict protein
properties through homology-based property mapping.
Just as sequence searches through GenBank and
SwissProt allow evolutionary relationships or functional
annotations to be made for newly sequenced proteins,
so too it is possible to use sequence searches through
PPT-DB to accurately predict both structural and
dynamic properties of proteins. Previous studies have
shown that homology-based property prediction can
significantly outperform the best ab initio (neural net,
SVM or HMM) prediction methods—if the query is
sufficiently similar to a protein in the database (22-24).
These homology-based predictions are also very fast
(<1s) compared to most other advanced property
prediction methods (most of which take minutes).
However, one obvious limitation of homology-based
property prediction is that it only works if some level of
sequence homology exists. Surprisingly, this requirement
is not as onerous or as infrequent as one might think.
To evaluate the performance of each of the PPT-DB’s
property predictors, we used a limited 10-fold cross-
validation assessment. Specifically, we randomly selected
10 sets of 100 proteins (or fewer if the database had <1000
sequences) from each PPT database and used these as
queries for the corresponding PPT-DB BLAST search
using an expect value cutoff of 107>, After the exact match
was excluded, the second highest scoring hit (if such a hit
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Figure 2. (A) A scatter plot showing of the predictive performance
(Q3 versus% sequence identity) for secondary structure prediction for
1000 random query sequences that were submitted to PPT-DB’s
secondary structure database. (B) A moving average of the same data
shown in A (using 5% sequence identity intervals). Using 10-fold cross-
validation (10 sets of 100 random query proteins), the average coverage
was 77.1£9.3% and the average Q3 for all secondary structure
predictions was 89.1 +1.3%.

was found) was used to predict the property of the query
protein. The prediction was then scored using standard
Q2 or Q3 methods (i.e. % correct) for categorical
predictions, such as secondary structure, or correlation
coefficients for numeric predictions, such as accessible
surface area. For global properties, such as folding
rate, contact order or secondary structure content, the
prediction is only accepted if the sequence length of
the matching protein is 100 £20% of the query protein’s
length. A similar rule is also used for accessible surface
area predictions. Results for each of these 10 prediction
sets were tabulated, both in terms of performance (average
and standard deviation) and overall coverage. Results for
individual prediction sets were also plotted using scatter
plots (performance versus sequence identity) along with
the proportion of queries that exhibited significant hits
(i.e. the coverage). All of these scatter plots and
performance statistics are available by clicking the
‘Database Details’ button for each PPT sub-database.
Figure 2 illustrates the results obtained for secondary
structure prediction via PPT-DB. This is a fairly typical
result with the performance generally dropping as the
sequence identity drops below 35-40%. As noted in
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this figure, PPT-DB achieves an average Q3 of 89.1%.
This compares quite favorably to Q3’s of 75% reported
for most conventional secondary structure prediction
methods (5, 22). Similar kinds of results are obtained
for many other protein properties. For instance, PPT-
DB’s accessible surface area (ASA) prediction achieves a
correlation coefficient of 84.5%, which is between 8 and
15% better than the best methods for ASA (3-state only)
prediction (16). Likewise PPT-DB obtains a Q2 for beta
hairpin prediction of 93.0%, while the best ab initio
method attains a Q2 of 77% (14). PPT-DB also performs
quite well in identifying edge/central beta strands with a
predictive accuracy of 90.1% compared to only 55% for
the best ab initio method (13). Space limitations prevent a
detailed comparison between all of PPT-DB’s property
predictions and those reported in the literature. However,
interested readers can view the performance statistics
by clicking the ‘Database Details’ button for each PPT
sub-database. As seen from the tables and scatter plots in
these ‘Database Details’ pages, predictions derived
from PPT-DB’s similarity searches are typically 85-95%
correct (for categorical or global property predictions) or
exhibit correlations of >0.80 (for numeric predictions).
This performance is typically 10-20% better than what
is obtained from the best ‘ab initio’ predictions. Our data
also suggests that reliable PPT-DB predictions are
possible for ~75% of all query sequences, as long as
the database contains >10000 sequences. Certainly as
PPT-DB’s databases increase in size, the property predic-
tion performance and level of coverage would be expected
to increase as well.

CONCLUSION

In summary, the PPT-DB is a comprehensive, open-
access, continuously updated, protein property database.
It was developed to fill a database void in the field of
protein property prediction, which currently lacks both a
uniformly formatted and a centralized repository of
known or predicted protein properties. The PPT-DB was
also designed to appeal to two very different audiences: (i)
programmers and (ii) biologists. Software developers
should find it helpful in developing, testing, comparing
and improving their own protein property prediction
programs while structural biologists and protein chemists
should find it useful as a fast and accurate tool to help
predict a wide range of important protein properties.
While the protein properties covered by the PPT-DB are
comprehensive, they certainly are not complete. Over the
coming year we are hoping to add more property
databases, including protein ‘site’ modification databases
(glycosylation, sulfation, phosphorylation sites), protein
solubility databases, thermostability databases, subcellu-
lar location databases and amyloid propensity databases.
Likewise we are certainly open to suggestions for new
kinds of databases or new database formats. Submissions
from external sources of new protein property databases
to the PPT-DB (if appropriately formatted, described and
validated) are welcomed. Overall it is hoped that the PPT-
DB will help improve the quality and reliability of protein

property predictions as well as the frequency with which
these kinds of predictions are made or reported in the
literature.
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